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Recently, the abuse of recreational drugs has become an important problem in many countries. Among these
psychoactive substances are synthetic cathinones, a group of compounds derived from the alkaloid cathinone, that have
gained widespread popularity. Many cathinones have demonstrated neurotoxic effects. The aim of this study was to
examine the effects of 3-fluoromethcathinone, a structural analog of mephedrone, on HT22 mouse hippocampal cells.
Cell viability was assessed using the sulforhodamine B assay. Flow cytometry was used to study the cell cycle
distribution. We found that 3-fluoromethcathinone inhibits growth of HT22 cells. Our results also revealed that it
induces Go/G,-phase cell cycle arrest. To our knowledge, this is the first study to demonstrate the cytotoxic action of 3-
fluoromethcathinone. Our findings suggest that abuse of this cathinone derivative may not be without risk.
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INTRODUCTION

Recently, synthetic cathinones have gained widespread
popularity as a new group of recreational drugs. Synthetic
cathinones are derivatives of cathinone (Fig. /B), an alkaloid
found in leaves of Catha edulis (khat) (1). These compounds are
structurally related to phenylalkylamines such as amphetamine
(Fig. 14) and act as central nervous system stimulants (2-5).
They promote the release and/or inhibit the reuptake of
monoamine neurotransmitters such as serotonin, dopamine and
noradrenaline. Several cathinone derivatives such as
methcathinone, bupropion or pyrovalerone have been used as
active pharmaceutical ingredients (6, 7). Recent data confirm the
growing popularity of nonmedical use of cathinones (6, 8-12).
They are used for their psychostimulant effects and
entertainment purposes. ‘Designer’ cathinones are mostly
encountered as amorphous or crystalline powders, tablets and
capsules. In recent years, they have been marketed in ‘head
shops’ or via the internet and have often been advertised as ‘legal
highs’. These products are intentionally mislabelled and
distributed as ‘plant food’, ‘plant feeders’, ‘research chemicals’
or ‘bath salts’ (6, 9, 13, 14). They are often labelled with
warnings ‘not for human consumption’ or ‘for research purposes
only’. Psychological and behavioural effects of synthetic
cathinones reported by users include general stimulation,
euphoria, improved mood, mild empathogenic effects,
sociability, talkativeness, awareness of senses and enhanced
music appreciation (6, 13, 15-19). The most common adverse
effects according to users’ reports are tachycardia, hypertension,
hyperthermia, insomnia, agitation, hallucinations/delusions and

confusion (6, 13, 15-30). Cathinones are often combined with
other psychoactive substances, such as cannabis, MDMA (3,4-
metylenedioxymethamphetamine) as well as alcohol (6). There
are numerous reports of poisonings and fatality cases related to
synthetic cathinones (16-30). Most of them resulted from
mephedrone (4-methylmethcathinone, Fig. 1C) use (18, 19, 21,
23, 24, 26-28). Distribution of many synthetic cathinones has
been legally controlled in some countries (7, 13). However, their
new derivatives have been continuously developed to
circumvent control mechanisms (13, 26, 31). At the end of the
last decade, especially in 2009-2010, the most popular synthetic
cathinone in European Union countries was mephedrone (10,
13). Once it became illegal, its structural analogs appeared on
the market as its legal alternatives. Among them were naphyrone
(naphthylpyrovalerone), flephedrone (4-fluoromethcathinone)
or 3-fluoromethcathinone (Fig. D) (30-34) .

Synthetic cathinones have important implications for public
health. There is limited data about their biological activity. Thus,
potential users of cathinones are exposed to substances of
unknown health risk. There are very few reports in the literature
regarding 3-fluoromethcathinone (20, 34-39). It was found to
inhibit noradrenaline and dopamine uptake and to release
noradrenaline, dopamine and serotonin (39). There are only a
few reports on its metabolism in human liver microsomes, rat
urine and rabbit liver slices (36, 37). Since many cathinones
have been demonstrated to exert neurotoxic effects (40-44), we
hypothesized that 3-fluoromethcathinone may also be
neurotoxic. Therefore, the aim of the study was to examine the
effects of 3-fluoromethcathinone on HT22 mouse hippocampal
cells viability via cellular protein determination with the
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Fig. 1. Chemical structure of (A) amphetamine, (B) cathinone,
(C) mephedrone, (D) 3-fluoromethcathinone.

sulforhodamine B assay and cell cycle distribution using flow
cytometry.

MATERIALS AND METHODS

Chemicals

3-fluoromethcathinone was purchased from LGC Standards
(UK). Its stock solutions were prepared using sterile physiological
saline solution and diluted to indicated concentrations before use.
Sulforhodamine B, RNase A and propidium iodide (PI) were
obtained from Sigma-Aldrich (USA).

Cell culture

The immortalized mouse hippocampal neuronal HT22 cell
line was kindly provided by Professor M. Wozniak (Department
of Medical Chemistry, Medical University of Gdansk, Poland).
HT22 cells were maintained in CO, incubator, at 37°C in a
humidified atmosphere containing 5% CO,. Cells were cultured
in Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich, USA),
supplemented with 10% heat-inactivated fetal bovine serum
(Sigma-Aldrich, USA), 100 IU/ml penicillin (Sigma-Aldrich,
USA) and 100 pg/ml streptomycin (Sigma-Aldrich, USA).

Sulforhodamine B assay

HT22 cells were seeded in 24-well plates (7%105cells per
well) and allowed to attach for 24 hours. Next, cells were
exposed to 3-fluoromethcathinone for 24 hours. Control cells
were incubated for 24 hours in the presence of solvent
(physiological saline). After treatment, TCA (trichloroacetic
acid, final concentration: 10% w/v) was added and cells were
incubated at 4°C for 1 hour. Thereafter, supernatants were
removed and cells were rinsed several times with deionized
water. Plates were air dried (20 min, room temperature) and cells
were then incubated with 0.4% (w/v) sulforhodamine B solution
(sulforhodamine B was dissolved in 1% acetic acid) for 20 min
at room temperature. Supernatants were removed and cells were
then rinsed several times with 1% acetic acid to remove the
unbound dye. Plates were air dried (20 min, room temperature)
and the incorporated sulforhodamine B was then released from
cells with 10 mM Tris base solution (pH 10.5). Absorbance was
measured at a wavelength of 570 nm using a microplate reader
(ELx800; BioTek Instruments, Inc., USA).

Cell cycle analysis

After treatment, cells were collected, washed with cold
phosphate buffered saline (PBS) and fixed in ice-cold 70%
ethanol at —20°C overnight. Next, cells were washed with cold
PBS, suspended in staining solution (50 pg/ml PI and 25 pg/ml
DNase-free RNase A in PBS) and incubated in the dark at 37°C
for 30 min. After incubation, flow cytometry analyses were
performed (Becton Dickinson FACSCalibur, USA).

Statistical analysis

Statistical analysis was performed using Statistica 9 software
(StatSoft, Poland). Data are expressed as means + S.D. Each
experiment was repeated at least three times. Statistical
differences between samples were evaluated using the non-
parametric Mann-Whitney U test. Differences were considered
significant at p<0.05.

RESULTS

Effect of 3-fluoromethcathinone on cell viability

Our results showed that 3-fluoromethcathinone (3-FMC) at
millimolar concentrations reduced viability of HT22
hippocampal cells (Fig. 24, 2B). Compared to control (untreated
cells), 1 mM 3-FMC reduced cell viability by about 16% (Fig.
2B). 2 mM and 4 mM 3-FMC caused about 34% and 76%
reduction of cell growth, respectively (Fig. 2B). Light
microscopy micrographs showed a concentration-dependent
increase in the number of cells that were detached from the
culture plate surface (Fig. 24).

Effect of 3-fluoromethcathinone on cell cycle progression

The cell cycle analysis revealed that 24 hours of incubation
of HT22 cells with 1 mM 3-FMC led to the Go/G,-phase arrest
(Fig. 3). Accumulation of cells in the Gy/G, phase was
accompanied by a corresponding decrease in the number of cells
in S and G,/M fractions (Fig. 3). Compared to control, treatment
of cells with 2 mM and 4 mM 3-FMC for 24 hours resulted in an
increase in the number of cells in the sub-G1 fraction (Fig. 3).
This effect was negligible in the case of 2 mM 3-FMC, but was
prominent in the case of 4 mM 3-FMC.

DISCUSSION

Many recreational drugs, including synthetic cathinones
have been reported to exert neurotoxic and other adverse effects
(6, 13,40, 41, 45-49). There is evidence suggesting that MDMA,
an active component of ‘Ecstasy’, is toxic to brain serotonin
neurons (45-47). Methylone, a cathinone derivative structurally
similar to MDMA, was reported to cause selective depletion of
serotonin and its transporter levels in the rat brain, indicative of
neurotoxicity (40). Serotonin transporters play a crucial role in
neurotransmission (50-52). Mephedrone was found to reduce
working memory performance in animal models (40). There is
also evidence of impaired memory after mephedrone use in
humans (53). Mephedrone was found to be a substrate for the
serotonin transporter (4). Hadlock et al. demonstrated decreases
in hippocampal serotonin transporter function and serotonin
level after repeated mephedrone administrations in rats (41). In
contrast to this finding, however, other in vivo studies indicated
that mephedrone did not alter monoamine neurotransmitters
levels in rats and mice (4, 40). It was also found that it did not
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Fig. 2. Effect of 3-FMC on viability of HT22 cells. (A) Phase-contrast images of HT22 cells. Cells were incubated in the absence
(control) or presence of 3-FMC for 24 hours. Data are representative of three independent experiments in duplicates. Bar 50 pm.
(B) Sulforhodamine B assay. HT22 cells were incubated in the absence (control) or presence of 3-FMC for 24 hours. Data are
presented as means + S.D. of four independent experiments, n=12 (n — number of samples per each experimental point).
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cause neurotoxicity to dopamine nerve endings of the striatum
and serotonin nerve endings of the hippocampus in mice (43,
44). It is noteworthy that 3-fluoromethcathinone was found to
affect rotorod performance and impair locomotor coordination
and balance in a functional observation battery in mice (38). Its
structural analogs were shown to have effects on serotonergic
neurons (54). Pharmacological examination of 3-
trifluoromethylmethcathinone revealed that it was 10-fold more
potent than methcathinone as an uptake inhibitor and a releasing
agent at the serotonin transporter (54).

To our knowledge, there are no studies regarding in vitro
toxicity of 3-fluoromethcathinone. In the present study, we
demonstrate for the first time that 3-FMC at millimolar

concentrations inhibits growth of HT22 mouse hippocampal
cells. HT22 cell line has been widely used as an in vitro neuronal
model (55-59). HT22 cells resemble proliferating neuronal
precursor cells. After treatment with 3-FMC we observed
concentration-dependent decrease in viability of HT22 cells.
This effect was the smallest at 1 mM and the most prominent at
4 mM 3-FMC concentration. Noteworthy, Bredholt et al.
demonstrated that 0.1 mM cathinone and 0.1 mM cathine had no
cytotoxic effects on human peripheral blood leukocytes (60).
Moreover, amphetamine decreased viability of rat cortical
neurons (61). Its ICs, concentration estimated after 24 hours of
treatment was 1.40 mM. 24 hours - exposure to 0.3 mM
methamphetamine significantly reduced proliferation of rat
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hippocampal neural progenitor cells. (62). The mechanism
underlying 3-FMC cytotoxicity needs to be elucidated.
Noteworthy, oxidative stress has been suggested to be involved
in toxicity of some recreational drugs (62-66).

Our results revealed that 1| mM 3-FMC induced G¢/G;-phase
cell cycle arrest, whereas 2 mM and 4 mM 3-FMC did not. The
possible explanation may be that after 24 hours of treatment, this
effect occurs over a very narrow concentration range of 3-FMC.
To our knowledge, there are no reports regarding effects of this
cathinone derivative on the cell cycle distribution. However, the
Gy/G;-phase cell cycle arrest was also observed after exposure of
normal human oral keratinocytes and fibroblasts to khat extract
- a source of cathinone and its derivatives (67). We found that at
4 mM concentration of 3-FMC a prominent, statistically
significant increase in the number of cells in the sub-G1 fraction
appeared, indicative of apoptotic DNA cleavage (68). However,
additional studies are needed to confirm whether 3-FMC induces
apoptosis in HT22 cells (69). Interestingly, khat extract and its
purified constituents cathinone and cathine were found to induce
apoptosis in HL60 human leukemia cells (70). Moreover, khat
extract was also shown to induce apoptosis in normal human oral

keratinocytes and  fibroblasts (71). Amphetamine,
methamphetamine, methylenedioxyamphetamine, and
methylenedioxymethamphetamine  (‘Ecstasy’)  reduced

proliferation and induced apoptotic cell death in rat neocortical
neurons in vitro (72). These effects were studied after 96 hours
of treatment and were more pronounced at 0.5 mM and higher
concentrations of the drugs (72). Amphetamine induced
apoptosis in rat cortical neurons (61). Apoptosis was also
detected in rat hippocampal neural progenitor cells after
treatment with methamphetamine (62). Moreover, 24 hours
exposure of N9 murine microglial cells to methaphetamine at
relatively high concentrations 1 mM, 2 mM and 4 mM led to a
significant increase of population of apoptotic cells (73). Our
results revealed that after 24 hours of treatment the effect of 2
mM 3-FMC on the number of cells in the sub-G1 fraction was
negligible. However, it may probably become more prominent
after longer time of treatment (74). 1 mM 3-FMC did not
significantly increase the population of cells in the sub-Gl
fraction. However, this effect may appear after prolonged
incubation with the drug as a consequence of the Gy/G;-phase
cell cycle arrest (75). Although 3-FMC caused concentration-
dependent decrease in viability of HT22 cells, results of the cell
cycle analysis suggest that at different concentrations effects of
this drug on the cell cycle may vary. Probably, at different
concentrations its mechanism of action varies or shows different
time-dependency pattern.

Noteworthy, many cathinones were reported to be used at
relatively high doses (6, 13, 15). For instance, according to
users’ self-reports during the typical mephedrone ‘session’ a
total of 0.5-1.0 g of the drug is taken. Acute mephedrone
intoxications that required hospitalisation were reported to
involve doses ranging from 0.1-7.0 g (15). In comparison to
amphetamine analogs higher doses of cathinones are necessary
to produce similar psychostimulatory effects (13). To prolong
drugs’ effects users take several doses, thereby increasing the
risk of overdose. In cases of fatal mephedrone intoxications,
mephedrone concentrations measured in blood of the deceased
were 0.13 mg/L (28), 0.23 mg/L (28), 0.5 mg/L (76), 0.98 mg/L
(28), 2.24 mg/L (28), 3.3 mg/L (77), 5.1 mg/L (23), 5.5 mg/L
(19), 22 mg/L (77). Mephedrone concentrations in urine of the
deceased were 186 mg/L (23) and 198 mg/L (76). There are no
reports in the literature regarding doses of 3-FMC or fatal
intoxications with this drug. Our results revealed that 3-FMC
exerted significant effects on viability and cell cycle distribution
of HT22 mouse hipopocampal cells at relatively high
concentrations. They are much higher than concentrations of

mephedrone detected in blood of the deceased (19, 23, 28, 76,
77). Probably, they cannot be reached in the brain in vivo. Thus,
3-FMC exhibited relatively low cytotoxicity against HT22 cell
line. However, additional studies on different experimental
models should be performed to improve our knowledge about
effects of this drug.

In summary, we have demonstrated cytotoxic effects of 3-
fluoromethcathinone. Further studies are required to explain the
mechanisms of its action. However, our findings suggest caution
when ingesting 3-FMC. Its abuse may not be without risk.
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