
INTRODUCTION

The Earth is protected against the cosmic radiation by
magnetosphere (magnetic field) and atmosphere. The
measurements of the Earth magnetic field made by European
Space Agency using three satellites launched in November 2013
showed modifications in the intensity of the magnetosphere:
decreases were recorded over the Western hemisphere, increases
over the Indian Ocean (1).

Previous studies, with different methods, showed a decrease
in the magnetosphere intensity with 10% in the last 150 years.
The intensity of the magnetic field varies between 0.3 Gauss at
the equator and 0.6 Gauss at the poles (2). The decrease of the
magnetosphere intensity permits the solar particles and cosmic
radiation to reach the inner layers of the atmosphere, being able
to affect the people who are at high altitudes. The ionized
particles are reflected back into the space by the strong
magnetosphere and atmosphere, but since the intensity of the
magnetosphere decreases and the atmosphere layers are affected,
in time, the Earth surface can be exposed to the cosmic and solar
radiation.

The number of commercial flights using the routes over
North Pole region has been multiplied during the last decades
(3). At the polar region, the minimum protection ensured by the
magnetosphere exposes the pilots and the passengers at high
levels of cosmic radiation (4).

In this review, an overview of the ionized particles that can
cause different types of illnesses in human beings is presented.

The antioxidant beneficial effects on human body are known
and this study is focused on finding of an efficient protection
against the radiation that can affect the people who travel by
planes at high altitudes, especially over polar area.

EARTH PROTECTION AGAINST COSMIC RADIATION

The Earth magnetosphere acts as a shield against the solar
flares that contain X-rays and against the solar wind that
transports electrons, protons, alpha particles, and heavier
particles. These solar particles can penetrate the magnetosphere
to the low altitudes in the polar region. The Sun coronal mass
ejections (containing ionized atomic matter with high kinetic
energy) can create a shock wave that will enable the fast-flowing
particle to collide with the Earth magnetosphere, initiating the
magnetic storms, through which, energetic ions and electrons
can enter deep into the magnetic field, creating a new electric
current that will generate a different new magnetic field that can
interfere with the Earth magnetic field (5).

The magnetosphere can also provide protection against
galactic cosmic rays -source of highly energetic particles with
origin outside the solar system. These cosmic particles consist of
different chemical elements, fully ionized. During the intense
solar activity, these cosmic particles are scattered by the solar
wind, but when the Sun activity is reduced (during the solar
cycle), the galactic cosmic particles that travel with a really high
velocity can enter the atmosphere and react with the atmospheric
particles generating secondary particles that can reach the
ground. The Earth magnetic field can block the entering of these
particles into the atmosphere especially at the equatorial areas,
but near the polar regions, the protection is insignificant,
affecting the passengers that fly at high latitudes and altitudes (6).

Inside the atmosphere, ionization occurs through solar
radiation (UV), cosmic ray fluxes, X-ray solar flare, and surface
radioactivity (effective at altitude lower than 3000 m). The lower
atmosphere presents an excess of charged particles. At high
latitude, middle atmosphere, ionization is intensified by aurora
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X-rays, solar events (that increase the number of protons that are
sent on Earth), and geomagnetic storms (that lead to the entering
of electrons to the atmosphere in high concentration at mid
latitude) (7). The maximum ion production rate is between
15,000 m and 20,000 m altitudes (1000/cm3) (8). Below 15,000
m, the ion production is realized by secondary particles (9), and
lower than 5000 m altitude ion production is in principal
produced by the surface radioactivity (10). The ionization rate
increases with latitude. Near the ground, ionization is with 20%
higher at high latitudes than at equator (11).

COSMIC RADIATION

There are two types of cosmic radiation: primary and
secondary. The primary cosmic radiation has its origin from
outside of our solar system, contains particle of extremely high
energy: protons (~89%), helium nuclei (~10%) and other heavier
particles (~1%) (12), which do not reach the sea level in the
geographical areas that are protected by the strong magnetic
field. The secondary cosmic radiation results from the
interaction of the primary cosmic rays with the atmosphere
particles and provides new particles of low energy (photons,
electrons, neutrons, muons) (13). At high mountain altitude
(above 3000 meters), the secondary cosmic rays showers affect
the people (14, 15) with different doses, depending on the
altitude, geographic area and sun activity (16-21).

The cosmic rays (CR) continuously enter the atmosphere at
high altitudes and have a periodicity of ~17 years (22). The
magnetic field inclination is zero at the equator so it can block
the entering of most charged particles at high altitudes of the
atmosphere. The magnetic field inclination is perpendicular to
Earth’s surface at the poles, consequently, it is not able to block
the charged cosmic particles so they will enter the lower layers
of the atmosphere, where they can interact with gas molecules
(23). The intensity of cosmic radiation and the energy spectra
depend on longitude, latitude and azimuth angle, and have
variations with ~27 days periodicity, according to the solar
rotation (24). As the cosmic rays enter the atmosphere, they
produce ionization that increases with the increasing of latitude.
During solar storms, the cosmic radiation that enters the
atmosphere is decreased (the solar wind blocks the cosmic rays)
and the ionization produced by cosmic radiation is at a lower rate
(25). When the cosmic rays enter the biosphere, the cells’

metabolism can be affected (DNA mutations, chromosome
alterations, carcinogenesis, apoptosis) and the body’s
functioning can be modified (blood pressure and heart rate
variations, etc.).

FACTORS THAT AFFECT COSMIC RAy EXPOSURE

There are many factors that affect the CR exposure: altitude
(cosmic radiation is increased at high altitudes), latitude (CR
intensity is minimum at equator and is maximum at poles,
increasing with latitude), outdoor activity, solar storms (alter the
magnetosphere’s protection against CR), sun rotation (cosmic
radiation has a periodicity of 27 days) (26), solar flares (the
source for protons that can enter into the atmosphere), mean
solar activity (11-year variation), barometric pressure
modification (modifies the muons, pions penetration inside the
atmosphere), diurnal variations of CR (27).

COMMERCIAL FLIGHTS

On polar flight plan, the pilots and the passengers are
exposed at a higher equivalent dose than those that fly along the
equator: 0.0986 mSv/flight (28, 29). Radiation received by flight
members is very heterogeneous, depending on the factors
already mentioned. Over the years, the received dose during the
same flight increased (Figs. 1 and 2) (30). Air crew is exposed to
ionizing radiation, mostly from galactic source. The cosmic
radiation (protons and a-particles) enter the atmosphere where
they collide with atmospheric particles generating nuclei of
oxygen, nitrogen, other air atoms. In this way, the particles
shower provides nuclei that can generate multiple other ionizing
particles. Crew and passengers from commercial flights (6000 –
12000 meters altitude), at all latitudes are exposed at radiation,
in which 88 – 97% of effective dose rate consists of: neutrons
(33 – 52%), protons (21 – 28%), electrons and photons (17 –
41%), muons (2 – 11%) and charged pions (< 1%). At high
latitude, the mean effective dose rate of CR is 2 – 2.7 times much
higher, according to the altitude (31). A crewmember receives a
higher dose (~6.1 mSv/y) than a person that works on the ground
(3.0 mSv/y) (32), and the cosmic radiation can affect pregnant
crewmembers (after only 4 – 5 months spent at high altitude, the
recommended maximum dose of 2 mSv is reached) (33).
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Fig. 1. Radiation received
by the flight members
during transcontinental and
intercontinental routes.



COSMIC RADIATION EFFECTS

The radiation spectrum of cosmic radiation contains
different particles with a broad range of energies that can
produce different effects on the human body.

Radiation produces immediate effects (DNA damage, signal
transduction responses, redox activation), early radiation effects
(DNA repair, mutation, genomic instability, induced gene
expression, cell cycle perturbation, apoptosis) and late radiation
effects (fibrosis, altered functions of the body’s systems,
cataract, cancer).

Radiation effects on the body’s cells can be caused by direct
action (directly on DNA) and indirect action (through the
reactive oxygen and nitrogen species that are produced by the
water radiolysis or by the alterations of other cellular molecules)
(34). The oxidative stress initiated by the ionizing radiation is
responsible for two-thirds of DNA damages (35).

- Photons action on the tissues consists in a broad energy
distribution with a maximum dose located close to the tissue
surface (36). Photons with energy lower than 1.02 MeV can
generate new electrons. The low-energy photons of cosmic
origin affect the whole body: 5400 photons/second shower the
body and the absorbed dose is stored inside the body for 132
seconds. The absorbed dose is 0.015 mGy/y and represents 5.5
% of effective annual dose of 0.27 mSv/y (37).

- Protons are able to produce nuclear interactions and to
induce oxidative stress in cells (38). The whole porcine body
irradiation with protons reduces the leukocytes number (39), and
in mice even after two months post-irradiation, the oxidative
stress altered the hematopoietic stem cells in bone marrow (40).

- Neutrons can transfer their energy to the hydrogen atoms
located in the tissues and produce the recoil protons that can
damage the tissue (41).

- Alpha-particles are particles with low-penetration depth so
they remain blocked in the skin where they can produce an
indirect ionization that leads to a persistent oxidative stress (42).

- X-rays cause DNA alterations but also cellular atoms
ionization that releases electrons with energy capable to ionize
further the tissue. The total body irradiation with X-rays decreases
the level of vitamin C and vitamin E in the tissues (43).

- Gamma-radiation stimulates the nitric oxide synthesis in
the cells, especially in the brain, liver, small intestine and colon
(44). Nitric oxide causes proteins nitration that alters the protein

functionality and signal transduction (45). Fang et al. showed
that gamma-irradiation increases the lipids, proteins, vitamin C
and folate oxidation (46).

- High-energy electrons produce water radiolysis in the
tissue cells with the release of the reactive oxygen species that
interact with macromolecules, leading to the protein damages
(47). The low-energy electrons of cosmic origin are absorbed
only within human skin: epidermis and partially within dermis.
At latitude 45°N, longitude 20°E, 80 m altitude, the effective
dose for uncovered skin is 0.83 mGy/y (48).

- Ionizing radiation causes DNA lesions by direct action but
mostly by indirect action, through the increased concentration of
reactive species (49) that are generated and that persist for weeks
after radiation exposure (50, 51). Ionizing radiation activates
nuclear factor kB (NF-kB), the protein that controls the post-
irradiation inflammation (52). The quantity of reactive species
that are produced by the ionizing radiation is in direct
relationship with the total dose received by the tissue. Water
radiolysis is the indirect mechanism that produces the most of
the radiation damages. The reactive species that are produced
can be neutralized by the scavengers, but superoxide (O2

–) and
hydrogen peroxide (H2O2) are relatively stable so they persist in
the tissue for longer periods of time and they can diffuse and
continue the oxidative stress into the distant tissues (53), causing
DNA damages (54), protein oxidation and lipid peroxidation
(55, 56). The irradiated cells produce reactive oxygen species,
cytokines, RNAs or calcium ions, molecules that are released
and received by the distant cells, cells that were not irradiated,
realizing an intercellular communication that continues the
damages into the body (57).

Very radiosensitive cells are the foetus cells that develop
between 8 – 25 weeks. In adult, bone marrow, colon and stomach
are very radiosensitive and the most resistant tissues are nerves
and muscles (58, 59). The brain is very sensitive to ROS because
of its decreased antioxidant capacity (vitamin E, superoxide
dismutase (SOD)) (60), its increased oxidative reactions, its high
iron concentration and its polyunsaturated fatty acids (61).
Parihar et al. (62) demonstrated in their study made on rodents
that CNS is sensitive to cosmic radiation. They exposed the
animals to low realistic doses of charged particles and observed
persistent dose-independent changes in functional connectivity
between cortex and hippocampus with modifications of
structure, number and distribution of specific synaptic proteins
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Fig. 2. Radiation received
by the flight members
during transcontinental and
intercontinental routes.



and neuroinflammation in prelimbic layer of medial prefrontal
cortex, structural alterations that can explain the observed
impaired recent memory (62). In a recent study, Parihar et al.
observed that mice exposure at low realistic doses of helium ions
produced modifications in perirhinal cortex: the resting
membrane potential was changed in the principal cells and the
number of activated microglia was increased, with persistent
effects on cognition, anxiety and depression (63).

McCraty et al. suggested in their study performed in
volunteers that increased CR exposure can stimulate the activity
of parasympathetic system (64). Monthly studies made by the
researchers presented the effects of cosmic radiation on the
cardiovascular system and the directly proportional relationship
between cosmic radiation activity and monthly deaths number
(65, 66). The increased activity of CR affects the electrical
activity of the heart and can disturb the lipid metabolism in
artery wall. Neutrons enter the body and are converted to protons
in the tissues with a high content of H+ ions (including
atheroma). The protons can destroy the cells leading to fatal
arrhythmia in ischaemic cardiomyopathy, acute myocardial
infaretion and can produce atheroma ruptures (67).

The oxidative stress induced by high energy iron ion
radiation produces endothelial dysfunction, effect that was
demonstrated by Soucy at al. in their study performed in rats
(68). Grabham et al. studied the effect of charged particles on
endothelial cells culture and observed vasculogenesis inhibition
that depended on particles type: the low LET protons inhibited
the motility of filopodia, while the high LET iron ions blocked
the formation of the lumen (69).

The cosmic rays exposure affects the visual system. In the
eye, cosmic radiation initiates a chain reaction that generates
different reactive species and photons, mechanisms that can
explain the light flashes upon dark-adaptation (70).

Each radiation type produces different effects in induction of
gene expression (71). Different ionized particles activate in a
specific manner the tissue proteins or the transforming growth
factor b (TGF-b), in accordance to their dose and type (72). X-
irradiation stimulates the oxidative stress in testicular (73) and
ovary tissues, but the cosmic radiation contains also charged iron
particles that affect the ovaries, inducing oxidative stress and
apoptosis in ovarian follicles, with decreased ovarian negative
feedback to the hypothalamus and anterior pituitary (74).

Eken et al. showed in their study that chronic low dose-
radiation increases the antioxidant capacity of the body (75), but
the broad spectrum of cosmic radiation encountered at high
altitudes can initiate the oxidative stress through many other
mechanisms overriding this enhanced antioxidant protection.

ANTIOXIDANT PROTECTION AGAINST COSMIC
RADIATION DURING COMMERCIAL FLIGHTS

In persons that travel at high altitudes for a long time,
especially through the polar routes, the radiation-induced
oxidative stress can be reduced by the prophylactic
administration of antioxidants. Because the antioxidant capacity
of the body decreases with aging (76), in older persons,
especially in those that travel through the polar routes, the
administration of antioxidants is necessary.

Burns et al. showed that in rats, vitamin A inhibited the acute
inflammation by inhibiting the expression of 80% of the
inflammation-related genes induced by the 56Fe ion radiation (77).
Levenson at al. suggested that vitamin A may have prophylactic
and therapeutic effects in rats exposed to whole-body gamma
irradiation. Precocious administration of vitamin A after whole-
body irradiation blocks leukopenia, thrombocytopenia and adrenal
growth (78). The study made by Ben-Amotz et al. suggested that

b-carotene administration in rats before the whole-body
irradiation can protect against the oxidative stress produced by
radiation, scavenging the free radicals (79).

Valko et al. presented in their review the role of vitamin C
supplementation in reduction of DNA damages, in the protein and
the lipid oxidation (80). Vitamin C (L-ascorbic acid) directly
interacts with hydroxyl (HO·) resulted during oxidative stress and
form less toxic free radicals (81). Ascorbic acid levels
significantly decrease after irradiation in liver, brain and spleen
(82) that is why a supplementation with this antioxidant helps in
protection against oxidative stress produced by ionizing radiation.

Vitamin E supplementation with doses lower than 200 IU/day
is considered beneficial (83) and protects the cell membranes
against lipid peroxidation induced by radiation (84). Anwar et al.
showed in their study that vitamin E may protect the rats’ intestinal
mucosa during the whole body gamma-irradiation, vitamin E
supplementation being administered 15 minutes before the
irradiation and for 13 days after irradiation (85). The mechanisms
that lead to oxidative stress during exposure to cosmic radiation
can be inhibited by the administration of vitamins E and C, to
block the DNA damage, lipid peroxidation, and proteins oxidation
(86, 87) and to inhibit the oxidative stress in testicular tissue (88).
Trolox, a water-soluble derivative of vitamin E, can prevent the X-
ray-induced apoptosis in irradiated lymphocytes (89). Kulkarni et
al. demonstrated in their study that g-tocotrienol, an analogue of
vitamin E, protected the hematopoietic tissue in whole-body
irradiated mice: hematopoietic stem cells and progenitor cells
were preserved and DNA damages were repaired almost
completely (90). The radioprotective effects of g-tocotrienol on
intestinal cells were demonstrated by Suman et al. in their study
performed in mice with total-body gamma irradiation. The
prophylactic administration of g-tocotrienol increases the
expression of anti-apoptoic genes, protecting the gastrointestinal
cells from radiation effects (91).

Selenium can increase the concentration of antioxidant
enzymes (92) and can protect the fibroblasts (93). Rostami et al.
confirmed in their study that selenium and vitamin E have
synergic effects and their simultaneous administration before the
exposure to X-rays provides a much more efficient protection
than their separated use (94).

Vitamin B12 and folic acid supplementation in rats may
protect against the radiation-induced oxidative stress and
leukopenia (95).

Lipoic acid is a lipid and water-soluble vitamin-like
compound that can react with: singlet oxygen (1O2·), hydroxyl
(HO·), peroxyl radical (RO2·), and hypochlorous acid (HOCl).
Lipoic acid is a potent antioxidant that can protect the cell
membranes, especially when it interacts with vitamin C and
glutathione (96, 97). Lipoic acid can protect against oxidative
stress produced by radiation (98) in ovary and testicular cells
(99), or in the hematopoietic tissue (100). Dihydrolipoic acid
(DHLA), the reduced form of lipoic acid, is a much more potent
antioxidant, being able to regenerate other endogenous
antioxidants from their radical form (101).

N-acetyl-cysteine (NAC), precursor of glutathione
(endogenous antioxidant), proved protective effects in rats, in
the whole body gamma-irradiation. Mansour et al. reported that
NAC administration for 7 days, 1 g NAC/kg body weight,
previous to irradiation, decreased the lipid peroxidation, nitric
oxide formation, DNA fragmentation and increased significantly
the antioxidant activity in gamma-irradiated rats (102). NAC
reduces NO synthesis, production of free radicals and the release
of cytokines, modulating NF-kB activity (103). Reliene et al.
demonstrated that N-acetyl-cysteine inhibits oxidative stress and
DNA fragmentation (104). The ovary tissue can be protected by
N-acetyl-cysteine against the effects of ionizing radiation, NAC
being able to restore the ovarian function by inhibiting the
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initiated oxidative stress (105). N-acetyl-cysteine provides
protection against oxidative stress in liver, decreasing lipid
peroxidation and nitric oxide concentration (106).

The study made in vitro by Kojima et al. on human blood
lymphocytes suggested that cimetidine, an antagonist of histamine
type II receptors, inhibits apoptosis, by acting as a scavenger of
HO·(107), a free oxygen species that is produced by ionizing
radiation through water radiolysis. Mozdarani et al. showed in
their study made in vivo, that cimetidine protected the lympho-
hematopoietic system and increased the survival rate in the whole
body gamma irradiated mice (108). The radioprotective effects of
cimetidine at low LET and high LET exposure were also
presented by jiang et al. in their research on long-term irradiated
rats. In irradiated rats, cimetidine inhibited lipid peroxidation,
increased the activity of SOD and GSH-Px, increased the number
of leukocytes and DNA content of bone marrow cells (109).

The researches made in vivo and in vitro on plant extracts
showed that their content (polyphenols, flavones, catechins,
procyanidins) has inhibitory effects on the mechanisms initiated
by the X-ray and gamma-irradiation (110).

The study made by Farag and Darwish on water extract of
Theobroma Cacao showed that the daily administration of cocoa
powder has antioxidant effects: the late radiation effects after
whole body gamma-radiation in rats were inhibited by
increasing the activity of antioxidant enzymes (111). The ROS
scavenging properties of cocoa powder were also seen in a study
made by Noori et al. during which, significant increases of SOD,
GSH and CAT were recorded in the liver of the rats that received
1 g cocoa powder/kg for 21 days (112).

Rabin et al. showed that strawberries can have a protective
effect against the heavy ion particles (113), and the dietary
supplementation with these fruits can improve the protection
against cosmic radiation.

The study made on grapes by Singha et al. suggested that
grape seed extract administered in high concentration, may be a
potent protector through its antioxidant effects against low dose
of ionizing radiation (114). Grape seed extract contains phenols
that initiate the synthesis of liver antioxidants. The study made
on rats that received grape seed extract before and after total-
body irradiation, showed the protective effects of this extract
against oxidative stress, with reduced lipid peroxidation and
protein oxidation in the tissues (115).

The extract of Olea europaea L. leaves contains polyphenols
with important antioxidant effects: oleuropein, hydroxytyrosol,
verbascoside that are able to inhibit, in vivo and in vitro, the lipid
peroxidation (116). Oleuropein and hydroxytyrosol reduce the
oxidation of low-density lipoproteins and decrease the total, free
and esterified cholesterol (117). Benavente-Garcia at al. showed
in their study made in mice exposed to X-radiation that Olea
europaea L. leaves extract is a potent radioprotective mixture of
polyphenols (118).

The ferulic acid (hydroxycinnamic acid) is found in wheat,
broccoli and rice bran and has an important antioxidant activity,
neutralizing the nitric oxide, hydroxyl radical (119) and
maintaining the antioxidant enzymes activity. Das et al. showed
that the administration of ferulic acid before irradiation
preserves the antioxidant enzymes (120). Ferulic acid can be an
efficient protective substance in the treatment of the early
period of low-dose radiation (121), for example, after an
exposure to an increased cosmic radiation. The inhibitory
effects of the ferulic acid on DNA damages after the exposure
to gamma-radiation, its activity on initiation of the repair
processes recommend this antioxidant as a treatment after an
accidental exposure to an ionizing radiation. Ferulic acid
promotes nuclear translocation of Nrf2 reducing the oxidative
stress by scavenging reactive oxygen species (122). The nuclear
factor erythroid 2-related factor 2, Nrf2, is a transcription factor

that regulates the expression of antioxidant proteins, playing an
important key role in ROS scavenging, even in radiation
exposure (123).

The radioprotective effects of sulphoraphane, an Nrf2
inducer identified in cruciferous vegetables (broccoli, Brussels
sprouts, cabbages), were studied by Mathew et al. on human
skin fibroblasts. The study showed that sulphoraphane has dose-
dependent effects and may protect against ionizing radiation
damages if it is administered repeatedly before the fibroblast
exposure (124).

Lycopene, an Nrf2 enhancer, is a carotenoid found in
tomatoes, carrots, watermelon, gac and papayas that showed
radioprotective effects in the study made by Srinivasan et al. in
cultured human lymphocytes, in administration before irradiation.
The prophylactic administration of lycopene reduced the number
of micronuclei, dicentric and translocation frequency, protecting
the normal lymphocytes against g-radiation effects (125).

The administration of green tea extract (EGCG;
epigallocatechin-3-gallate) has many beneficial effects. Stepien et
al. studied the effects of green tea extract oral administration in
NaCl-induced hypertensive rats and observed, in serum, significant
decreases of LDL and total cholesterol (126), molecules that can be
the sources for reactive species synthesis in CR exposure. Topical
treatment with green tea extract can be used to reduce the alpha-
particles effects on human skin, because this polyphenol has
antioxidant effects (127) blocking the DNA methylation (128).

Recent studies proved that saffron has protective effects
against ionizing radiation. Koul and Abraham showed that
saffron administration in mice inhibited the gamma-radiation-
induced oxidative stress and DNA damages (129). Crocin,
picrocrocin and safranal are the active compounds of saffron. In
a recent study, crocin and safranal prevented the DNA damages
and the testicular cells damages induced by the gamma-radiation
and crocin also showed significant antioxidant effects,
scavenging the hydroxyl radical (130).

Since the CR exposure affects the immune system, the
photodynamic therapy (PDT) can be an alternative treatment for
the infections that may occur. Davies et al. presented in their
study the favourable effects of photodynamic therapy with
porphyrin as photosensitizer (PS), and pointed out the
importance of combined use of PDT with natural compounds,
like curcumin as PS (131). The antioxidant effects of curcumin,
a polyphenol identified in turmeric, were evaluated by Scrobota
et al. in experimental oral cancer. Their study showed that
curcumin administration reduced in serum and in malignant oral
mucosa the concentration of malondialdehyde, a lipid
peroxidation end-product (132). jelveh et al. established in their
study that curcumin decreased the lipid peroxidation in
fibroblasts membrane after gamma-irradiation, in mice (133).

Saada et al. evaluated the effects of omega-3 fatty acids in
rats’ brain and found that this substance may reduce the
oxidative stress produced by the whole-body gamma irradiation,
study that suggests the protective effects of omega-3 fatty acids
on the ROS that are produced in the brain, before and during the
exposure to radiation (134).

The oxidative stress in rat lens is enhanced by the exposure
to gamma-radiation and the antioxidant capacity can be
increased by the administration of melatonin, as Taysi et al.
established in their study (135). Melatonin can be a good
protector against cataract that develops in pilots.

In summary, the heterogeneity of the cosmic radiation can
produce different effects on the human body through different
mechanisms. The antioxidant supplementation can aid in
increasing the protection against the cosmic radiation in persons
that travel by plane at high altitudes, but the type and the dose of
the antioxidants must be adjusted according to age, sex, time
spent at high altitudes and conditions related to the variations of
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the magnetosphere intensity and solar activity. A healthy diet
helps in the immunity processes and the oral administration of
antioxidants before and during the travel by plane reduces the
cosmic radiation-induced oxidative stress. The exposed tegument
can be protected with topical treatment containing Green tea
extract and the melatonin administration can prevent the cataract
development. The further studies on antioxidants will complete
the information required for a better protection against cosmic
radiation-induced oxidative stress.

Abbreviations: CR, cosmic rays; CNS, central nervous system;
ROS, reactive oxygen species; SOD, superoxide dismutase; CAT,
catalase; GSH, glutathione; GSH-Px, glutathione peroxidase;
NAC, N-acetyl-cysteine; LDL, low-density lipoproteins; LET,
linear energy transfer; Nrf2, nuclear factor erythroid 2-related
factor 2; PDT, photodynamic therapy; PS, photosensitizer
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