
INTRODUCTION
Diabetes has become an increasingly prevalent disease

worldwide. According to the WHO, there are more than 220
million diabetics worldwide, and it is estimated that this number
will double by 2030. Increased susceptibility to infection is one
of the pathological alterations associated with diabetes, apart
from changes to the kidneys and cardiovascular system (1-3).
Certain types of infections are more commonly found in patients
with diabetes, while some types of infections are almost
exclusive to diabetic patients. Studies on the impaired function
of immune cells in diabetes are conducted for a long time, but
the etiology of alterations in the functioning of T and B
lymphocytes is still poorly understood. The impaired function of
lymphocytes in diabetes may be attributed to the direct effect of
hyperglycemia and/or hypoinsulinemia that alters the regulatory
network of immune cells. Adenosine is an endogenous
nucleotide that modulates the immune response. Its
immunosuppressant and anti-inflammatory effects are
recognized universally (4).

The aim of this review is to summarize current knowledge
on changes in adenosine metabolism and handling in diabetic
lymphocytes. We relate described alterations to the individual
functions of T and B cells.

ALTERED FUNCTION OF LYMPHOCYTES IN DIABETES
Alterations in T lymphocyte function and an increased risk of

lower respiratory tract, urinary tract, skin and mucous membrane

infections are common features of both type 1 and type 2 diabetes
in humans (5). There is a strong correlation between the one’s
increased susceptibility to infections and poor metabolic control
in diabetes (6, 7). Patients with insulin-dependent diabetes
mellitus (DM1) display a suppressed proliferative response of
CD4+ T-cells to primary antigens (8, 9). Studies on peripheral
blood mononuclear cells from diabetic patients demonstrate a
decreased basal production of cytokines (10, 11). Moreover, it
was revealed that the impaired proliferation of lymphocytes in
type 2 diabetes patients couldn’t be ameliorated by interleukin-2
(IL-2) during phytohemagglutinin (PHA) treatment (12). Nervi et
al. (13) showed that TCR/CD3-mediated proliferation of
polymorphic nuclear blood cells from DM1 patients was
markedly impaired compared to control subjects. Decreased
thymidine uptake by lymphocytes, along with a lower percentage
of IL-2 receptor positive cells and increased plasma levels of
tumor necrosis factor were also observed in type 2 diabetes 2 (11,
12, 14). In diabetic mice, in turn, the secretion of IL-4 was
markedly reduced, in contrast to the secretion of IL-2 and
interferon-gamma, which remains unaffected (15). A high rate of
apoptosis was observed in lymphocytes obtained from diabetic
patients and isolated from alloxan-induced diabetic rats (16). So
far, however, there is no consensus as to the occurrence of a
reduction in the humoral immune response (function of B cells)
in diabetic patients since previous studies revealed both defective
(17-19) and normal (20-22) antibody production following
vaccination. These ambiguities may result from the heterogeneity
of the groups compared in terms of diabetes type or the antigen
used for immunization. Recently Ebil et al. (9) revealed that the
primary antibody response to T cell dependent antigens is
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reduced in patients with type 1 rather than type 2 diabetes.
Rubinstein, who analyzed the effect of diabetes on the generation
of an antibody response in vivo, suggested that diabetes induces
significant decreases in IgG levels after six months of diabetic
induction and during the early secondary response (23).

The reasons behind the increased susceptibility of diabetic
patients to persistent infections and impaired lymphocyte
proliferation are not fully understood. Some of the altered
functions of diabetic lymphocytes (such as a reduction in the
production of IL-2, IL-6 and IL-10) may result from elevated
glucose concentrations (24), and normal proliferation of
lymphocytes has been restored following insulin administration
(2, 3). One can assume that elevated glucose concentration
affects the action of factor(s) that regulate the lymphocyte
function. It was observed that adenosine metabolism and release
from various cells is altered in diabetes (25).

THE ADENOSINE EFFECTS ON T AND B CELL
FUNCTION

The regulatory role of adenosine in the immune system has
been documented by many experimental and clinical observations
(26, 27). Years of studies have revealed that adenosine can
modulate lymphocyte T activation and proliferation, production of
IL-2, and T-cell-mediated cytotoxicity (4, 28-30). One of the well-
known effects of adenosine is its differential regulation of pro- and
anti-inflammatory cytokines and free radicals production (31-33).
Adenosine is an endogenous nucleoside formed both in the
extracellular space and inside the cell. Metabolic changes that
occur in the course of diabetes are reflected by elevated adenosine
concentrations in some tissues (34, 35). Increased intracellular
levels of adenosine may lead to its release into the extracellular
space and consequent activation of the receptors located on the
surface of the same or surrounding cells. Therefore, adenosine
generated under diabetic conditions may modulate lymphocyte
function in an autocrine or paracrine fashion. It is proposed that
adenosine receptors could be promising therapeutic targets in
autoimmune diseases (36). This proposition based on observation
that NECA, an adenosine receptor (AR) agonist ameliorated the
course of diabetes and protected the pancreas from immune-
mediated β-cell destruction in animal models of type 1 diabetes.
The multiple effects of purinergic (P1) receptors on T cell effector
function and the modulation of immune cell activation have been
studied since the 1970s. Many of the adenosine effects on
thymocytes and T cells were solved during studies in patients with
adenosine deaminase (ADA) severe combined immunodeficiency.
The lack of ADA activity results in elevated level of intracellular
and extracellular adenosine and derived compounds, which leads
to the severe depletion and functional defects of T and B cells.
Adenosine plays a potential role in the regulation of thymocyte
differentiation by elevating cAMP in immature thymocytes and
inducing their apoptosis (37). On the other hand, adenosine can
regulate the positive and negative selection of thymocytes by
providing a TCR-inhibiting signal to immature CD4+CD8+
thymocytes (38).

Numerous observations have revealed that adenosine can
inhibit peripheral T cell activation, proliferation, the production
of pro-inflammatory cytokines, and cell mediated cytolysis (39-
42). Activation of A2A-ARs inhibits the TCR-triggered up-
regulation of the IL-2 receptor (4). Moreover, exposure to
extracellular adenosine blocks FasL mRNA up-regulation (43).
This decrease in FasL expression after A2A-AR stimulation
protects CD4+ T lymphocytes against activation-induced cell
death (44). A2A-ARs may regulate cytokine production in
activated T lymphocytes. An example of such an effect is the
inverse relationship between elevated plasma concentrations of

adenosine and decreased ratios of IFN-gamma to IL-4-
producing CD4+ T cells observed in pregnancy (45). Also, A2A-
AR activation was recently shown to inhibit Th1- and Th2- cell
development by decreasing the proliferation and IL-2 production
of naive T cells (46). Furthermore, activation of A2B-ARs that are
up-regulated during T cell activation events results in significant
reduction of IL-2 production in activated human cells (47).
Recent findings presented by Zarek at al. demonstrate that
stimulation of A2A-ARs by adenosine promotes long-term T-cell
anergy and leads to generation of adaptive regulatory T cells
(48). It seems that A2A and A2B -ARs mediate the effects of
adenosine on IL-2 production and lymphocyte proliferation,
whereas activation of both A2A and A3 -ARs can induce apoptosis
in T cells (49-51).

Under normal physiologic conditions, the level of adenosine
in the tissue microenvironment is relatively low and increases
during hypoxia, ischemia, inflammation, infection and metabolic
stress (52). The main source of extracellular adenosine during
metabolic stress is extracellular catabolism of released from the
cell purine nucleotides by a cascade of ectonucleotidases. The
second major source of extracellular adenosine is intracellular
adenosine, which is released by nucleoside transporters, when
intracellular adenosine levels rise (e.g. degradation of
intracellular ATP in ischemic conditions). In patients with septic
shock, plasma adenosine reaches levels of 4–10 µM, whereas
such high values are not observed in healthy individuals (53).
Furthermore, in prolonged and/or inappropriate inflammatory
diseases, adenosine concentrations in the range of 100 µM have
been found (e.g. in synovial fluid of patients with
atherosclerosis). Adenosine levels below 1 µM have little
influence on immune cells, but at concentrations of 3 µM and
higher this molecule is an important and strong
immunosuppressor of T cells.

DISTURBANCES OF ADENOSINE HOMEOSTASIS 
IN DIABETIC LYMPHOCYTES

SYNTHESIS AND METABOLISM OF ADENOSINE
Adenosine is both a metabolic precursor for nucleic acids

and an important signalling molecule. It is continuously
generated inside the cell as well as extracellularly. Adenosine
concentration and its net release or uptake by lymphocytes
depends on the activity of several enzymes. On the cell surface
adenosine is generated during ecto-enzymatic hydrolysis of
purine nucleotides by ecto-nucleotidase. This pathway
comprises at least three ectoenzymes: ecto-NNP (EC 3.1.4.1),
ecto-NTPDase-1 (CD39, EC 3.6.1.5) and ecto-5’-nucleotidase
(EC 3.1.3.5) and regulates local and pericellular concentration of
adenosine (54, 55). Ecto-5’-nucleotidase (CD73) that hydrolyse
AMP to adenosine is a dimmer of two identical 70-kD subunits
bound by a glycosylphosphatidyl inositol linkage to the external
face of the plasma membrane. Ecto (CD73)-nucleotidase is used
as a marker of lymphocyte differentiation. Another potential
source of extracellular adenosine is cAMP, which is converted to
5’-AMP by ecto-phosphodiesterase (EC 3.1.4.1) (56). Inside the
cell adenosine can be generated by soluble 5’-nucleotidase (5’-
NT) (EC 3.1.3.5) that hydrolyses AMP (57, 58). At least two
soluble isoforms of 5’-nucleotidase have been identified in
human lymphocytes. One of them is c-N-I (having an affinity to
AMP), while the other is c-N-II (which has a preference to IMP)
(58). Deficiency of 5’-NT is associated with a variety of
immunodeficiency diseases.

Another source of adenosine in the cell is the hydrolysis of
S-adenosylhomocysteine (SAH) by SAH hydrolase (EC
3.3.1.1). This reaction provides one-third of the adenosine
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production under normoxic, but not hypoxic conditions (59).
Intracellular level of adenosine depends not only on reactions
producing adenosine, but also on its conversion to other
compounds. One of such a reaction is the formation of SAH
from adenosine and L-homocysteine in a SAH hydrolase
reversible reaction. Adenosine can be converted into AMP by
cytoplasmic adenosine kinase (AK) (EC 2.7.1.20) and/or be
transformed into inosine by adenosine deaminase (ADA) (EC
3.5.4.4) (60-62). Inosine is further degraded to uric acid or
returned to the pool of purine nucleotides in the reaction
catalyzed by the hypoxanthine-guanine phosphoribosyl-
transferase (EC 2.4.2.8). There are two different types of ADAs:
ADA1 and ADA2 (63). ADA1 is present in the cytoplasm, but
also is found on the cell surface. Ecto-ADA1 is anchored on T
cell surface by integrating with CD26 (dipeptidylpeptidase IV,
EC 3.4.14.5) (64, 65). The activity of membrane bound ADA in
T lymphocytes is lower than in B lymphocytes (66, 67). It has
been demonstrated that this enzyme plays a putative role in the
lymphocyte differentiation (68). Moreover ecto-ADA1 interacts
with A1 and A2B -Ars changing their affinity for adenosine (68,
69). Membrane ADA1 in activated human lymphocytes is
regulated by cytokines. The level of ecto-ADA1 and CD26
expression is up-regulated by IL-2 and IL-12. In contrast, IL-4
leads to the down regulation of ADA on lymphocyte surface
(70). ADA2 is secreted by dendritic cells or monocytes
differentiating into macrophages and is anchored on the cell
surface via proteoglycans and adenosine receptors. This enzyme
has low ADA activity (100-fold higher Km comparing to that of
ADA1), but exhibits a growth factor-like activity and stimulates
proliferation of T helper cells (71).

A comparison of adenosine-metabolizing enzymes operating
in B and T cells shows a similar activity of AMP deaminase, but
higher AK and ADA activities in cytoplasm of T cells. On the
other hand B cells are able to release higher quantities of
adenosine because of high 5’-NT and low AK and ADA
activities (72). Moreover, comparing to T cells B cells exhibit a
higher extracellular level of nucleotide-hydrolysing activity
(73). Barankiewicz et al. suggested that B lymphocytes are the
only source of adenosine, while T lymphocytes being the
recipients of adenosine generated signal (73). Extracellular
catabolism of ATP (e.g. circulating in plasma) proceeds via
sequential ecto-enzymatic nucleotide breakdown to AMP and
adenosine. The expression of ecto-nucleotidases is associated
with B cell development. It is observed that expression of ecto-
ATPase, ecto-ADPase and ecto-AMPase increases continuously
with maturation of B cells reaching maximal activity level in late
pre-B-cells. Recently we demonstrated that ATP continuously
released from B cells constitutes the primary source of
peripheral adenosine (74). Thus, the activities of ecto-enzymes
and efficiency of adenosine uptake by the nucleoside
transporters determinate the adenosine level in lymphocyte
periphery. The work performed on laboratory animals and
observations in humans indicate that both these factors are
altered in diabetes. Increased blood level of ADA activity was
observed in diabetic humans as well as in laboratory animals
during development of diabetes (75-77). It has been
demonstrated that the activity of 5’-NT increases in lymphocytes
of diabetic patients (78). We observed that incubation of rat T
cells or human B lymphocytes at high glucose concentrations
(25 mM) results in elevation of both cytosolic and ecto 5’-NT
activities (66, 67). The mechanism by which high glucose
induces the activity of 5’-NT is largely unknown. Stefanovic and
coworkers demonstrated that administration of gliclazide (but
not glibenclamide) to obese type 2 diabetic patients leads to the
reduction of lymphocyte 5’-NT activity (78). Since, gliclazide
(but not glibenclamide) owing to its unique aminoazabicyclo-
octane ring has free-radical-scavenging ability it might be

assumed that elevated 5’-NT activity in diabetics is related to the
oxidative stress. However, the precise mechanism of gliclazide-
induced reduction of 5’-NT activity in diabetic lymphocytes
remains unknown. Rucker at al. demonstrated an increase in
ATP, ADP, AMP and 5’TMP hydrolysis in the serum of diabetic
rats (79). However, the hydrolysis returned to normal levels
following insulin therapy. Authors suggested that increased
hydrolysis of extracellular ATP is the leading cause of the
elevated level of adenosine in the blood of diabetic animals.
Although, in another study no significant differences in ATP,
ADP and AMP levels in resting rat T cells cultured at various
glucose and insulin concentrations were observed (66).
However, in the absence of insulin, T lymphocytes became more
susceptible to metabolic stress releasing higher quantities of
adenosine. Moreover, changes in the concentrations of insulin
did not influence the activities of AMP deaminase, 5’-
nucleotidase and adenosine deaminase in rat T lymphocytes. The
only enzyme whose activity was dependent on insulin
concentrations was adenosine kinase (80). In the absence of
insulin the activity of this enzyme in T lymphocytes decreased
by ~75%, independently of glucose concentrations. In turn,
changes in glucose concentrations modulated the activity of
ecto-5’-nucleotidase and level of ADA bound to the plasmatic
membrane of T lymphocytes. Both, the ecto-5’-NT and
membranous ADA activities were 2-fold higher in cells cultured
at 20 mM glucose compared to those cultured at 5 mM glucose,
independent of insulin concentrations (66). Proliferating T
lymphocytes in response to stimulation with Con-A exhibited
marked changes in the activities of AMP deaminase, ADA and
5’-NT, but no changes in AK activity were observed in these
cells. This suggests that adenosine metabolism in T lymphocytes
depends both on the phase of the cell cycle and the
concentrations of glucose and insulin. T lymphocytes cultured in
20 mM glucose and the absence of insulin secrete significant
amounts of adenosine into the culture medium. Conversely, the
concentration of adenosine is hundreds times lower in the media
of cells cultured in 5 mM glucose and the presence of insulin
(66). Studies on human B lymphocytes revealed that the
activities of ADA and 5’-NT, but not AK depended on glucose
and insulin concentrations in the culture media (67). However,
changes in these enzymes activities do not correlated with
adenosine level in the cell media during accelerated ATP
catabolism (67), impaling a rate-limiting role of nucleoside
carriers in adenosine outflow from the cell.

ADENOSINE TRANSPORT
The extracellular concentration of adenosine depends on the

balance between its release from the cells, generation by 
ecto-nucleotidases on the cell surface, and its re-uptake by the
bi-directional adenosine transport processes. Thus, adenosine
transport seems to be an important regulator of adenosine action,
since the efficiency of this process may determine adenosine
availability either to receptors or to metabolizing enzymes. Two
types of nucleoside transport systems are known to mediate
nucleoside transport across the plasma membrane: the
equilibrative facilitated-diffusion type (ENT) and the
concentrative Na+-dependent one (CNT) (81, 82). Other non-
specific candidates for nucleoside carriers across plasma
membranes are organic anion and cation transporters, peptide
transporters, and ABC protein family members (83). In human
peripheral blood lymphocytes the expression of hCNT2,
hCNT3, hENT1 and hENT2 transporters has been reported (84).
Human leukocytes uptake adenosine predominantly (55%) by
ENT1 transporter (84). Many studies have demonstrated that the
expression level of nucleotide transporters depends on the type
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of cell and its physiological status. Moreover, exposition of the
cell to various hormones (trüodo-L-thyronine, glucagon,
insulin), glucose, cytokines (M-CSF, INF-gamma) and/or
activators such as PMA, and LPS modulates the expression and
activity of nucleoside transporters NT (85). Our knowledge on
the regulatory properties of nucleoside transporters in T and B
cells is limited. Proliferation of activated T cells involves the
synthesis of new RNA and DNA and utilization of the
intracellular pool of nucleotides and deoxynucleotides, which
originates from de novo synthesis and/or from the nucleoside
salvage pathway. In immune cells, de novo synthesis is limited,
and the salvage pathway predominates, relying on the cell’s
ability to uptake nucleosides from the extracellular milieu (86).
It is known that resting human peripheral blood lymphocytes
(PBL) have low transport rates of nucleotides and a low density
of nitrobenzylthioinosine (NBMPR) binding sites. However,
about a 30-fold increase in the density of NBMPR binding sites
occurs after stimulation with PHA or anti-CD3 (87, 88). The
tight relationship between the proliferation rate and the number
of NT confirm observations performed on lymphocytes from
patients with lymphomas and myeloid leukemias (89). In
diabetes the adenosine transport in lymphocytes is altered due to
the changes in expression level of NT (90, 91). In rat T
lymphocytes the expression level of rENT2 and rCNT2 highly
depends on insulin, whereas the expression of rENT1 is sensitive
to glucose. In T cells cultured at high glucose (25 mM) and the
absence of insulin, the expression level of rENT1 and rENT2
decreases while expression of CNT2 increases significantly (90).
These alterations in NT expression leads to the reduction of
adenosine transport rates and depletion of its intracellular level.
Diabetic B lymphocytes displayed similar changes in NT to that
observed in T lymphocytes. An elevated level of glucose
suppresses expression of the rENT1 transporter in B
lymphocytes through the MAP kinase pathway, whereas
transmission of insulin signaling necessary to maintain rENT2
expression depends on phosphatidylinositide 3-kinase (PI3K)
activity. The effect of insulin on rCNT2 expression relays on
MAP kinase and to a lesser extends on PI3K.

In summary, the increase in glucose levels independently of
insulin significantly reduces the expression of ENT1 transporter,
which in T and B cells accounts for 80% of adenosine transport.
While the ENT2 and CNT2 expression is regulated only by
insulin.

ADENOSINE RECEPTORS
Adenosine exerts its biological effect by coupling to cell-

surface receptors. To date four adenosine receptors (ARs) have
been identified namely A1-AR, A2A-AR, A2B-AR, and A3-AR
(92). Adenosine is the major ligand for these receptors however,
recently it has been demonstrated that also inosine a metabolite of
adenosine is able to activate some ARs effectively (93). It has
been observed that extracellular inosine has anti-inflammatory
and immune suppressive effects, which could be blocked
partially by A1-AR and A2A-AR antagonists (94). Each of the four
adenosine receptor subtypes is coupled to a cell protein called a
G-protein, which is capable of stimulating (Gs protein) or
inhibiting (Gi protein) the production of intracellular cAMP.
Changes in the levels of cAMP influence the activity of
intracellular protein kinases that phosphorylate intracellular
proteins or transmembrane ion channels during physiological
responses (95). Adenosine at physiological levels (below 1 µM)
can activate A1-AR, A2A-AR and A3-AR, whereas much higher
concentrations of this nucleoside generated under
pathophysiological conditions are required to stimulate A2B-AR
(96-98). In lymphocytes all four ARs are expressed, although to

different extend. It has been demonstrated that the A2A-AR, A2B-
AR and A3-AR are expressed on human and rodent T
lymphocytes (4, 45, 47, 49-51, 69, 97, 98), whereas the
expression of A1-AR on these cells is low or it is not expressed at
all (4, 42, 99). Expression of A2A receptors is much stronger on
peripheral T lymphocytes compared to B lymphocytes (4, 97).
Under in vitro and in vivo conditions activation of A2A-AR and
A2B-AR negatively regulates pro-inflammatory and anti-tumor
effects of activated T cells (100). Development of diabetes results
in an altered expression of ARs in many types of cells including
lymphocytes (101-104). In experimentally induced diabetes, the
expression level of adenosine receptors on T cells is altered,
except for the A1-AR. In diabetic T lymphocytes there is a
significant increase in level of A2A-AR mRNA and a slight
increase in A2B-AR mRNA, whereas a level of A3-AR mRNA
significantly decreases. These changes in expression of ARs in
diabetic T cells depend on hyperglycemia and/or
hypoinsulinemia. Studies on the expression of ARs in B
lymphocytes cultured at different insulin concentrations showed
that the presence of this hormone in the culture medium resulted
in an increase of A1-AR and A2A-AR mRNA and protein levels,
along with a decrease in A2B-AR mRNA and protein levels. The
expression level of A3-AR remained unchanged. Insulin induced
A1-AR and A2A-AR expression through Ras/RAf-1/MEK/ERK
and suppressed A2B-AR expression by activation of p38 MAP
kinase (103). On the other hand increased glucose concentration
suppressed the expression of A1-AR, A2B-AR and A3-AR, but had
no effect on A2A-AR level (104). Moreover, its appears that high
glucose suppresses expression of adenosine receptors in B
lymphocytes utilizing some elements of MAPK signaling
pathway and different protein kinase C isoforms. It is generally
believed that activation of A1 and A3 ARs stimulates immune cell
function, whereas ligation of A2A and A2B receptors is reflected by
immunosuppression. Comparison of changes in expression level
of ARs in B lymphocytes induced by low insulin level and high
glucose suggests that A2B-AR may become the predominant
adenosine receptor found on B cells during the course of diabetes.
Consequently, B cells might be more sensitive to suppression by
adenosine, released by interacting T lymphocytes.

In conclusion, the quantitative and qualitative expression
levels of adenosine receptors differ significantly between T and
B lymphocytes, and glucose and insulin regulate expression of
adenosine receptors in these two types of cells in a different
manner.

THE ADENOSINE EFFECT ON LYMPHOCYTE
FUNCTION IN DIABETES

Proliferation of lymphocytes is a crucial step in cell-
mediated immunity. A reduction in the proliferation potential is
one of the most widely observed T cell functional defects
associated with diabetes. However, the mechanisms responsible
for impaired lymphocyte proliferation in diabetic patients
remain largely unclear. Some reports point to disturbances in
cytokines production and reduction in number of cell bearing
their receptors and decreases in the expression of complement
receptor CR-3 (7, 12). Our studies showed that suppressed
proliferation of diabetic T lymphocytes is the result of reduced
expression of AK, which leads to increased outflow of adenosine
from the cells. Outside the cell adenosine by stimulating A2A-AR
leads to increase of cAMP synthesis in the cell and suppression
its proliferation in a PKA-dependent manner. Moreover, the
level of A2A-AR expression increases in diabetic T lymphocytes
(99). In diabetic B lymphocytes the expression level of AR
changed differently compared to T cells. The level of A1-AR,
A2A-AR, and A3-AR expression decreases, whereas level A2B-AR
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remains unchanged (103, 104). This might suggest that the
sensitivity of diabetic B cells to adenosine decreases. Moreover,
adenosine transport in diabetic B lymphocytes is significantly
impaired due to the reduction of ENT1 expression (91).
However, we have demonstrated that under normal conditions
little adenosine is released from B lymphocytes and that ATP
released from the cell is the primary source of peripheral
adenosine (74). Thus, reduced uptake of adenosine by diabetic B
cell with concomitant decrease of ADA activity might result in
increases of local adenosine concentration on the cell surface to
the levels required for stimulation AR. Our observations indicate
that stimulation of A2A-AR leads to the suppression of B cell IgM
production (unpublished).

CONCLUSION
Hypoinsulinemia and hyperglycemia in a cell-specific

manner significantly affect the metabolism and transport of
adenosine as well as the expression level of adenosine receptors
in T and B lymphocytes. These changes have functional impact
on B and T lymphocytes that display lowered proliferative
potential and decreased synthesis of immunoglobulin by B cells
in response to stimulation with an antigen. Therefore, it might be
assumed that disturbed homeostasis of adenosine greatly
contributes to pathomechanism leading to impaired function of
immune cells in diabetes.
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