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Endocannabinoids (e.g. anandamide, 2-arachidonoylglycerol or virodhamine)
regulate the function of the cardiovascular system mainly in the following way: 1) by
acting via CB1 receptors, 2) by activation of CB2 receptors, and 3) by modifying the
function of vanilloid TRPV1, serotonin 5-HT3 and α7-subunit-containing nicotinic
acetylcholine receptors. Endocannabinoids are implicated in the pathogenesis of
hypertension and of hypotension associated with haemorrhagic, endotoxic, and
cardiogenic shock, and with advanced liver cirrhosis. There is also evidence for their
involvement in the control of atherosclerosis.
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INTRODUCTION

Preparations of Cannabis sativa (hashish, marijuana) have for centuries been
used for medical and recreational purposes. The major psychoactive component
of cannabis, ∆9-tetrahydrocannabinol (∆9-THC), and synthetic cannabinoids
(e.g., WIN 55,212-2 and CP-55,940) act via two G protein-coupled receptors
identified by molecular cloning: the neuronal CB1 receptor, mediating most of the
neurobehavioral effects of cannabinoids and found predominantly in the brain
and in the peripheral nervous system, and the extraneuronal CB2 receptor
demonstrated mainly in immune and haematopoietic tissues. Soon after the
discovery of these receptors, their endogenous ligands, named endocannabinoids
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(e.g., anandamide, 2-arachidonoylglycerol [2-AG] or virodhamine) with
cannabimimetic activity were identified as metabolites of arachidonic acid (for
review, see 1-7).

INFLUENCE OF CANNABINOIDS ON THE CARDIOVASCULAR FUNCTION 
UNDER PHYSIOLOGICAL CONDITIONS

Besides their neurobehavioural and immunological actions, cannabinoids
exert important cardiovascular effects, encompassing modulation of autonomic
outflow in the central and peripheral nervous system as well as direct effects on
myocardium and vasculature, which have been described in detail in many
reviews (e.g. see 1-7). As shown in Table 1, cardiovascular effects of
cannabinoids can be mediated (in the broadest sense) via CB1 and CB2 receptors,
the so-called endothelial cannabinoid receptor, ionotropic receptors such as
vanilloid TRPV1, serotonin 5-HT3 and α7-nicotinic receptors and still other
mechanisms.
Influence of cannabinoids on the human cardiovascular system

Several effects of smoked marijuana on the cardiovascular system have been
described (see e.g. 8, 9). Although there is much interindividual variability,
typical increases in heart rate associated with a single marijuana cigarette range
from 20% to 100%, with the peak in heart rate occurring 10 to 30 minutes after
beginning to smoke. In addition, most subjects experience an increase in blood
pressure, particularly when supine. Orthostatic hypotension may occur acutely as
a result of decreased vascular resistance. Smoking marijuana decreases exercise
test duration in maximal exercise tests and increases the heart rate at submaximal
levels of exercise. Chronic use of cannabis in man elicits a long-lasting decrease
in heart rate and blood pressure. Tolerance develops to the acute effects of
marijuana smoking and ∆9-THC over several days to a few weeks.

The mRNA for cannabinoid CB1 receptors was detected in human aorta (10)
and hepatic artery (11). In addition, the expression of cannabinoid CB1, CB2 and
vanilloid TRPV1 receptor mRNA was demonstrated on human
cerebromicrovascular endothelial cells (12). However, so far, the influence of
endocannabinoids on human vessels was examined in few studies only. Thus, the
endocannabinoid anandamide relaxed isolated human pulmonary artery rings (13)
but not myometrial arteries isolated from pregnant women (14). Its application on
the human skin (unlike its intravasal administration) increased microcirculatory
flow (15). We showed that another endocannabinoid, virodhamine, and abnormal
cannabidiol relaxed the human pulmonary artery via endothelial cannabinoid
receptors (13, 16). The presence of anandamide, anandamide amidohydrolase
(FAAH; the enzyme responsible for degradation of anandamide) and mRNA for
cannabinoid CB1 receptors have been also detected in human heart (17, 18). In
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addition, functional presynaptic inhibitory cannabinoid CB1 receptors have been
identified in human heart (19). Moreover, anandamide was found to decrease
cardiac contractility not only in rats (20) but also in humans (18).

INFLUENCE OF CANNABINOIDS ON THE CARDIOVASCULAR FUNCTION 
UNDER PATHOPHYSIOLOGICAL CONDITIONS

Endocannabinoids play a role in the cardiovascular system not only under
physiological but also under pathophysiological conditions. Pathophysiological
conditions comprise several forms of shock in the broadest sense (see next
paragraph and Table 2) but also hypertension. With respect to the latter condition,
endocannabinoids limit the pathological increase in blood pressure and in cardiac
contractile performance. In support of this, anandamide caused a larger and
longer lasting hypotension in anaesthetized spontaneously hypertensive rats
(SHR) compared with anaesthetized normotensive rats (21, 22). The hypotensive
action of anandamide was observed in conscious SHR but not in conscious
normotensive rats (21, 23). The cannabinoid CB1 receptor antagonist rimonabant
increased blood pressure and cardiac contractility in three different models of
anaesthetized hypertensive animals, i.e. SHR, Dahl salt-sensitive rats and rats
with angiotensin II-induced hypertension (22). The expression of CB1 receptors
was increased in the myocardium and aortic endothelium of SHR compared with
normotensive controls (22). Prevention of the degradation or uptake of
anandamide by treatment with the FAAH inhibitor URB597 or the transport
inhibitor OMDM2 reduced blood pressure, cardiac contractility and vascular
resistance in SHR to the level observed in normotensive controls in a CB1
receptor antagonist-sensitive manner (22). The simultaneous analysis of changes
in blood pressure and cardiac performance showed that a decrease in cardiac
contractility rather than a reduction in peripheral resistance was primarily
responsible for the antihypertensive effect of anandamide (22).

Endocannabinoids exert a cardioprotective effect mainly via cannabinoid CB2
receptors. Thus, in the rat heart anandamide and 2-AG have been shown to limit
infarct size (24-26). Moreover, the cannabinoid CB2 antagonist SR 144528
abolished the protective effect of endotoxin/lipopolysaccharide (LPS; 27) and
heat stress (28) against myocardial ischaemia-reperfusion injury. ∆9-THC
protected neonatal cardiomyocytes against hypoxia via cannabinoid CB2 receptor
activation by induction of NO production (29). However, the delayed (24 h)
preconditioning through transdermal nitroglycerin application increased the rat
heart tissue content of 2-AG (but not anandamide), which reduced the left
ventricular infarct size via CB1 receptors (26). It has been also shown that the
cannabinoid receptor agonist HU-210 exerted an antiarrhythmic effect during
ischemia-reperfusion in rats in vivo (30).
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Endocannabinoids also exert a neuroprotective effect, mainly via activation of
cannabinoid CB1 receptors; e.g. in cannabinoid CB1 receptor knockout mice, an
increased severity of stroke was noticed (for review, see 3, 31). Furthermore, it
has been demonstrated that low-dose oral cannabinoid therapy via CB2 receptors
reduces progression of atherosclerosis in mice (32).

Finally, the question arose whether the greater incidence of hypertension and
coronary artery disease in men and in postmenopausal women could, at least
partially, be related to changes in the function of the endocannabinoid system.
Accordingly, estrogen as a putative protective factor was found to stimulate
anandamide release from human blood endothelial cells (33) and anandamide-
elicited vasorelaxation was greater in mesenteric arteries isolated from female than
from male rats, suggesting a crucial dependence on the presence of estrogens (34).
Role of endocannabinoids in shock

Endogenous cannabinoids are implicated in the hypotension associated with
different kinds of animal shock and with the fall in blood pressure in animal
models of liver cirrhosis and acute pancreatitis (Table 2). Endocannabinoid-
mediated cardiovascular effects even appear to influence survival since in the
presence of rimonabant (given before shock) an increase in mortality, despite the
increase in blood pressure, was reported in haemorrhagic and cardiogenic shock
(Table 2). The cannabinoid agonists ∆9-THC and HU-210 decreased the mortality
in rats with haemorrhagic shock (35). In septic shock and in the hypotension
connected with severe acute pancreatitis rimonabant or the CB1 antagonists AM
281 or AM 251 decreased mortality. With respect to the sepsis model, the
favourable effect of AM 281 on mortality was higher in non-diabetic than in
diabetic rats (36). Importantly, hemoperfusion with polymyxin B-immobilized
fiber, which results in anandamide (but not 2-AG) absorption, improved 28-day
survival and organ failure in patients with sepsis (37). Unexpectedly, ∆9-THC
(like rimonabant) decreased mortality in rats with septic shock (38).

In several studies, the contribution of the endocannbinoids to the development
of shock and hypotension was examined in detail. Thus, circulating platelets and
macrophages from rats with haemorrhagic, septic and cardiogenic shock and
from cirrhotic animals had elevated levels of anandamide or 2-AG (Table 2). A
higher level of anandamide (but not 2-AG) was also determined in macrophages
treated in vitro with LPS (38, 39). In addition, injection of macrophages or
platelets isolated from animals with cardiogenic, septic or haemorrhagic shock
into normal rats lowered blood pressure. A higher anandamide level and a more
pronounced hypotensive response in recipient rats was noticed when
macrophages were taken from mice deficient in FAAH and stimulated in vitro
with LPS when compared to LPS-treated macrophages isolated from wild-type
littermates (39). Importantly, the participation of endocannabinoids in shock has
been also determined in humans since in the serum of patients with endotoxic
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shock levels of anandamide and 2-AG were higher and the concentration of
FAAH mRNA was lower than in normal serum (Table 2). Plasma levels of
anandamide were also enhanced in patients with cirrhosis (Table 2). In addition,
monocytes isolated from cirrhotic patients (but not healthy volunteers) and given
intravenously to recipient rats also caused a long-lasting hypotension (40).

It has been postulated that CB1 receptors are involved in the hypotension
induced by endocannabinoids released during shock. Thus, the CB1 receptor
antagonist rimonabant completely prevented or even reversed hypotension in all
animal models of circulatory shocks mentioned above. Another argument for the
role of CB1 receptors is the observation that the effect of rimonabant in
haemorrhagic shock was diminished by the cannabinoid agonist 
WIN 55 212-2 (35). Moreover, an overexpression of cannabinoid CB1 receptors
was found in vascular endothelial cells from human cirrhotic livers and in
mesenteric arteries isolated from rats with biliary cirrhosis (Table 2).

The hypotension induced by LPS or by hemorrhage was reversed in a dose-
dependent manner by the intravenous injection of rimonabant but not by its
administration into the cisterna magna or the IVth cerebral ventricle (35, 38)
suggesting that one or more peripheral mechanisms are involved in the above
effects. The significance of the preexisting sympathetic tone on the hypotensive
response to endotoxic shock was excluded in experiments on anaesthetized rats
pretreated with phentolamine (to eliminate α-adrenoceptor vasoconstrictor tone)
and then continuously infused with vasopressin to restore basal blood pressure to
control values; thus, the hypotensive response to LPS-exposed macrophages was
comparable in phentolamine-pretreated and in control animals (38).

Rimonabant, probably via postsynaptic CB1 receptors, also almost completely
prevented the drop in blood pressure in the rats receiving injections of
macrophages or platelets, isolated from rats with septic or haemorrhagic shock,
or from cirrhotic patients (35, 38, 40). Other changes related to septic shock (i.e.
fall in cardiac contractility and in blood flow in aorta, carotid and renal arteries,
deterioration of arterial oxygenation, lactate overproduction or increase in body
temperature) were also sensitive to rimonabant or to the CB1 receptor antagonist
AM 281 (for details, see Table 2). CB1 receptor antagonists also counteracted the
decrease in cardiac contractility and the increase in mesenteric blood flow and
portal pressure in cirrhotic rats as well as the hyporeactivity to potassium chloride
and the hyperresponse to acetylcholine in vessels prepared from such animals
(Table 2). By contrast, rimonabant has been shown to further impair the
acetylcholine-induced relaxation of the rat aortic rings, previously attenuated by
myocardial infarction (41).

We decided to check whether presynaptic inhibitory cannabinoid CB1
receptors located on sympathetic nerve terminals innervating blood vessels and
heart (Table 1) play a role during shock as well. For this purpose we used the
model of pithed and vagotomized rats. This model has been previously used by
us for the identification of inhibitory presynaptic CB1 receptors on sympathetic
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nerve fibres innervating resistance vessels (42) and heart (43). It offers the
opportunity to study drug effects on the peripheral cardiovascular system without
interference with reflex loops implicating the central nervous system. Electrical
stimulation of the preganglionic sympathetic nerve fibres produced increases in
blood pressure (BP) or heart rate (HR) by about 30 mmHg and 50 beats/min,
respectively (for stimulation parameters and experimental protocol, see Fig. 1 in
(44) and legends to Fig. 1 and Fig. 2 of the present paper). We applied two models
of shock, namely septic shock (induced by injection of LPS) and haemorrhagic
shock (elicited by slow withdrawal of blood). Because of the lack of reflex
responses in pithed as compared to anesthetized rats (35, 38), the visible sign of
shock (i.e., the development of profound hypotension) was obtained already by
relatively low doses of LPS or by the withdrawal of relatively low volumes of
blood in the pithed rat model.

Injection of LPS produced a dose-dependent inhibition of the neurogenic (i.e.
electrically stimulated) increases in BP (Fig. 1A, (44)) and HR (Fig. 2A). The
inhibitory effect for the highest doses of LPS (BP - 4 mg/kg and HR - 1.5 mg/kg)
was about 40-50%. Similarly, haemorrhagic shock caused inhibition of the
neurogenic vasopressor response by about 40% (Fig. 1B). We can exclude the
possibility that the inhibitory effects on the neurogenic vasopressor response and
tachycardia were due to changes in basal cardiovascular parameters developing in
shock. Thus, the typical increase in HR induced by cardiovascular shock, which
has been also noticed in anaesthetized rats undergoing septic shock (38), was
either not present or only very slight in pithed rats during septic or haemorrhagic
shock, respectively. Moreover, the profound hypotension stimulated by shock
was compensated by constant infusion of vasopressin (LPS-induced shock) or
prostaglandin F2α (haemorrhagic shock). Control rats received infusion of saline
solution instead.

In order to answer the question whether the observed inhibition is related to a
presynaptic site of action we performed additional experiments, in which increases
in BP or HR were induced by injection of agonists of α-adrenoceptors
(noradrenaline 1-3 nmol/kg or phenylephrine 10 nmol/kg) or β-adrenoceptors
(isoprenaline 0.05-0.15 nmol/kg). The respective increases in BP or HR were about
30 mmHg (noradrenaline, phenylephrine) and 50 beats/min (isoprenaline),
respectively, i.e. comparable to those obtained under electrical stimulation. Quite
unexpectedly, although septic and haemorrhagic shock uniformly inhibit the
neurogenic tachycardia and/or vasopressor response, we obtained three different
effects of shock on the increases in BP and HR stimulated by exogenous ligands.
Firstly, LPS (4 mg/kg) was without influence on the noradrenaline-stimulated
increase in BP ((44), Fig. 1A), suggesting that septic shock inhibits the neuorogenic
vasopressor response via a presynaptic mechanism. Secondly, LPS strongly and
dose-dependently amplified the chronotropic response to the non-selective β-
adrenoceptor agonist isoprenaline (Fig. 2A). Additional experiments with selective
agonists and antagonists of β-adrenoceptors led us to the conclusion that the
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recruitment of functionally active heart β2-adrenoceptors is responsible for the
enhancement of the positive chronotropic response to β-adrenoceptor agonists in
the initial phase of endotoxic shock in pithed rats (45). Thirdly, haemorrhagic shock
inhibited the phenyleprine-elicited increase in blood pressure (to about the same
extent as it inhibited the neurogenic vasopressor response; Fig. 1B).

Our next question concerned the possible involvement of endocannabinoids in
the above effects. For this purpose, we used the CB1 receptor antagonist rimonabant
applied at the low dose of 100 nmol/kg known to block presynaptic CB1 receptors
(e.g. 43). The inhibitory effects of septic shock on the neurogenic pressor response
and tachycardia were sensitive to rimonabant but were not modified by antagonists
of CB2 receptors (SR 144528), TRPV1 receptors (capsazepine) and/or histamine H3
receptors (clobenpropit) (Figs 1, 2 and (44)). Rimonabant (but not SR 144528) also
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Fig. 1. Influence of lipopolysaccharide (LPS) (A) and blood withdrawal (B) on the increase in
diastolic blood pressure (DBP) induced electrically (ES) or by intravenous (i.v.) injection of
noradrenaline (NA) or phenylephrine (PHE) and interaction with the cannabinoid CB1 receptor
antagonist rimonabant (CB1), the cannabinoid CB2 receptor antagonist SR 144528 (CB2) or the
vanilloid TRPV1 receptor antagonist capsazepine (TRPV1) in pithed and vagotomized rats
pretreated with pancuronium (0.8 µmol/kg). Septic shock was induced by LPS slowly injected i.v.
over a time period of 1 min (A) whereas haemorrhagic shock was induced by withdrawal of 1.5
ml/kg blood over a time period of 2.5-3 min (B). Stimuli (ES: 1 Hz, 1 ms, 50 V [7-10 pulses] or NA
1-3 nmol/kg i.v. or PHE 10 nmol/kg i.v.) were administered 5 min before LPS or blood withdrawal
(S1) and were repeated 10, 20 and 30 min after induction of septic (S2, S3, S4; only S3 is shown here)
and 5 and 15 min after induction of haemorrhagic shock (S2, S3). Rimonabant (0.1 µmol/kg) or SR
144528 (3 µmol/kg) were administered i.v. 10 min before S1; capsazepine (1 µmol/kg) was
administered 2 min before S1 and 2 min before S3. Both for animals exposed and not exposed to the
antagonist, the ratios S2/S1 and S3/S1 for the increase in DBP obtained in rats with septic or
haemorrhagic shock were expressed as percentages of the corresponding ratios obtained in control
animals (vehicle for LPS; no blood withdrawal). Mean±SEM of 3-11 rats. *P<0.05, **P<0.01,
***P<0.001 compared to the corresponding control. rrP<0.01 compared to the group not receiving
rimonabant.



reduced the amplificatory influence of septic shock on the isoprenaline-stimulated
positive chronotropic response (Fig. 2B, C). In contrast to septic shock, rimonabant
failed to modify the inhibitory influence of haemorrhagic shock on the increases in
blood pressure stimulated electrically and by injection of phenylephrine (Fig. 1B).
None of the antagonists under study modified the electrically or agonist-induced
increase in BP or HR by itself ((44), unpublished results).

Table 3 summarizes that presynaptic inhibitory CB1 receptors that are located
on pre- and/or postganglionic nerve fibres innervating resistance vessels and heart
that serve as additional targets for endocannnabinoids released in the initial phase
of septic, but not haemorrhagic, shock. Moreover, postsynaptic CB1 receptors
might be involved in the amplificatory influence of septic shock on the increase
in HR directly stimulated via postsynaptic β-adrenoceptors by isoprenaline. The
detailed mechanism underlying this interaction remains to be established. By
contrast, isolated cirrhotic ventricular papillary muscles in hearts exhibited lower
responsiveness to isoprenaline, which was completely restored by the CB1
receptor antagonist AM 251 (46).
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There is increasing evidence that,
besides pre- and postsynaptic CB1
receptors, also receptors similar
although not identical to CB1 receptors
are involved in the shock-induced
hypotension. Thus, quite unexpectedly
LPS-induced hypotension in rats was
reversed by rimonabant 3 mg/kg but
not by the same dose of the CB1
receptor antagonist AM 251. Moreover,
the profound decrease in blood
pressure elicited by LPS in
anaesthetized mice deficient in CB1
(CB1-/-) or both CB1 and CB2 (CB1-/-
/CB2-/-) receptors was counteracted by
rimonabant (47). The same group also
observed in rats that rimonabant (but
not another CB1 receptor antagonist
AM 251) strongly reversed the LPS-
induced hypotension and the decrease
in cardiac contractility but only slightly
delayed the decrease in aortic blood
flow and the increase in peripheral
resistance and had no effect on the
tachycardia elicited by LPS in rats (47).
Thus, the authors concluded that
rimonabant inhibits the acute
hemodynamic effects of LPS by
interacting with an unknown cardiac
receptor distinct from CB1 or CB2
receptors. The presence of an
additional non-CB1-non-CB2 cardiac
cannabinoid receptor, mediating the
anandamide-induced negative inotropic
effect and coronary vasodilatation, has
also been postulated on the basis of in
vitro experiments (20). In LPS-
stimulated hypotension the involvment
of endothelial cannabinoid receptors is
also likely since their antagonist O-
1918 inhibited this effect (48).

Finally, as shown in Table 1
anandamide is also an agonist of
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vanilloid TRPV1 receptors located on sensory vagal nerves in the heart and on
perivascular sensory nerves. Their activation causes reflex bradycardia and/or
hypotension (49) and vasodilation through the release of calcitonin gene-related
peptide (CGRP) (50), respectively. A series of studies suggests that TRPV1
receptors, in addition to CB1 and cannabinoid-like receptors, are involved in
cardiovascular effects induced by shock. Thus, the relaxant effect of anandamide
in rat mesenteric arteries occurring in the early phase of endotoxic shock was
connected with an overexpression of TRPV1 receptors, increased density of
CGRP-positive nerves and enhancement of the anandamide-stimulated release of
CGRP (51). Moreover, mesenteric arteries isolated from cirrhotic rats displayed
overexpression of TRPV1 and CB1 receptors. Moreover, the vasodilator response
of these vessels to anandamide was reduced by antagonists of TRPV1 and CB1
receptors (52). Recent studies indicate that TRPV1 receptors appear to play a
protective role against endotoxin-induced hypotension and mortality. Thus, the
LPS-induced fall in BP was higher in TRPV1 knockout than in wild-type
conscious mice (53). Moreover, pretreatment of rats with the TRPV1 receptor
antagonist capsazepine enhanced the LPS-elicited hypotension, reduced the endo-
toxemia-related increase in plasma noradrenaline and adrenaline levels and
decreased the survival rate (54). During septic shock, an enhanced level of
substance P was also observed. Moreover, two antagonists selective for substance
P NK1 receptors, RP-67580 and L-733,060, produced a similar pattern of changes
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Figure 3

SHOCK

cardiogenic septic  haemorrhagic
advanced liver 

cirrhosis 

Generation of endocannabinoids 
(anandamide and/or 2-arachidonoylglycerol) 

from blood macrophages and platelets

CARDIOPROTECTION: 

1. Decrease in cardiac contractility: 

a) presynaptic CB1 receptors 

inhibition of NA release, 

b) cardiac presynaptic CB1 receptors. 

2. Increase in coronary flow: 

a) coronary CB1 receptors, 

b) coronary cannabinoid-like receptors. 

3. Reduction of infarct size following   

    myocardial infraction - CB2, CB1 or

    non CB1/CB2 receptors.
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    cell activation. 
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    leukocyte chemotaxis. 

VASODILATATION VIA 

ACTIVATION OF: 

1. presynaptic CB1 receptors 

  inhibition of NA release, 

2. TRPV1 receptors 

  activation of CGRP release, 

3. vascular postsynaptic CB1

  receptors, 
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Fig. 3. Mechanisms involved in the cardiovascular effects of endocannabinoids during shock. The
vasodilated state occurring during advanced liver cirrhosis has also been entered into this figure
although this condition is not a shock sensu stricto.



in LPS-induced shock like capsazepine. These data suggest that an activation of
TRPV1 receptors, mainly expressed is sensory nerves, probably leads to the
release of substance P which activates NK1 receptors and stimulates the
sympathetic axis via different central and peripheral mechanisms (54).

Taken together, as shown in Fig. 3 cardiogenic, septic and haemorrhagic shock
or liver cirrhosis lead to the release of endocannabinoids (mainly anandamide
and/or 2-AG) from macrophages and/or platelets. They cause vasodilatation and
hypotension on the one hand, but exert a cardioprotective action on the other. In
addition, they are known as anti-inflammatory substances acting mainly via CB2
receptors (for review, see e.g. 5, 55). Endocannabinoids were found to modify the
rate of survival. Thus, modulation of the endocannabinergic system may have a
therapeutic implication in hypotension connected with various forms of shock.
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