
INTRODUCTION

The gastric mucosa plays an essential role in maintaining the
physiological functions of the stomach. This mucosa acts as
gastric barrier, which protects deeper tissue against the
damaging actions of the gastric juice components and ingested
mucosal irritants (1, 2). In the classic approach, a gastric
mucosal barrier is composed of cells from the gastric epithelium
with intracellular tight junctions as well as adjacent layer of
mucus. Gastric blood flow plays a crucial role in the
maintenance of gastric integrity (3, 4). The undisturbed gastric
blood flow is regulated by many physiological factors and
mechanisms, including nitric oxide (NO), afferent capsaicin-
sensitive C fibers and products of cyclooxygenase (COX)
activity (5, 6).

NO is produced and released from the vascular endothelium,
epithelial cells and sensory nerve endings (5, 7) via the activity
of NO synthase (NOS). A substrate for this enzyme is aminoacid

L-arginine and NO-synthase (NOS) puts molecules of oxygen
(O2) into molecule of L-arginine, capable of producing NO (7).
NO diffuses from the endothelium to smooth muscles, located in
the vascular wall, where NO reacts with guanylyl cyclase,
leading to cellular enhancement of cyclic guanosine
monophosphate (cGMP), acting as a second messenger. The
increment of cGMP activity, in smooth endothelial muscle,
causes relaxation of vascular wall, accompanied by an increase
of blood flow through this vessel (8). This vasodilatatory effect
is mimicked by exogenous administration of nitrates, namely
NO donors, such as 3-morpholinosydnonimine (SIN-1), S-
nitroso-N-acethyl-D,L-penicylamine (SNAP), gliceryl trinitrate
(GTN) or NO-releasing aspirin (NO-ASA) (9). Other
vasodilators, for example, pentoxifylline (PTX) may act on
smooth myocytes, causing their relaxation and this effect seems
to be NO independent (10).

The vasodilatatory effect of NO contributes to the maintenance
of gastric mucosal barrier integrity and the inhibition of NO
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The gastric mucosa plays an important role in the physiological function of the stomach. This mucosa acts as gastric
barrier, which protects deeper located cells against the detrimental action of the gastric secretory components, such as acid
and pepsin. Integrity of the gastric mucosa depends upon a variety of factors, such as maintenance of microcirculation,
mucus-alkaline secretion and activity of the antioxidizing factors. The pathogenesis of gastric mucosal damage includes
reactive oxygen species (ROS), because of their high chemical reactivity, due to the presence of uncoupled electron within
their molecules. Therefore they cause tissue damage, mainly due to enhanced lipid peroxidation. Lipid peroxides are
metabolized to malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). The local increase of MDA and 4-HNE
concentration indicates ROS-dependent tissue damage. Superoxide dismutase (SOD) is the main enzyme, which
neutralizes ROS into less noxious hydrogen peroxide. A decrease of SOD activity is an indicator of impairment of the
protective mechanisms and significantly contributes to cell damage. Hydrogen peroxide is further metabolized to water
in the presence of reduced glutathione (GSH). GSH can also work synergetically with SOD to neutralize ROS. The
reactions between GSH and ROS yields glutathione free radical (GS�), which further reacts with GSH leading to free
radical of glutathione disulphide (GSSG�). This free radical of GSSG can then donate an electron to the oxygen molecule,
producing O2

�-. Subsequently, O2
�- is eliminated by SOD. A decrease of the GSH level has detrimental consequences for

antioxidative defense cellular properties. Gastric mucosa, exposed to stress conditions, exhibits an enhancement of lipid
peroxidation (increase of MDA and 4-HNE), as well as a decrease of SOD activity and GSH concentration. This chain
reaction of ROS formation triggered by stress, appears to be an essential mechanism for understanding the pathogenesis
of stress - induced functional disturbances in the gastric mucosa leading to ulcerogenesis.
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production by a nonspecific N-nitro-L-arginine (L-NNA) was
shown to markedly impair important functions of a gastric mucosa
including gastric secretion and gastric motility (11, 12). The
inhibition of NOS by the administration of exogenous synthetic
inhibitors such as L-NNA, L-NAME or by the endogenous NOS
inhibitor, ADMA have been shown to exacerbate the acute gastric
mucosal lesions and delayed the healing of chronic gastric ulcers
(10, 12, 14, 15). The adverse effect of blockade of NOS on gastric
integrity by L-NNA or the aggravatory effect of ADMA on gastric
mucosal lesions can be reversed by administration of L-arginine, a
substrate for this enzyme, administered in the presence of these
inhibitors (10, 14, 15) (Fig. 1).

The maintenance of gastric mucosa integrity and the
gastroprotection depend upon the activity of afferent capsaicin-
sensitive C fibers (16-18). Sensory nerves are involved in the
regulation of blood microcirculation in the gastric mucosa, which
is densely innervated by capsaicin-sensitive afferent neurons,
containing vasodilator peptides, such as calcitonin gene-related
peptide (CGRP) (8, 16, 17). The C fibers are sensitive to
capsaicin administration, because the low doses of capsaicin
stimulate of sensory nerves accompanied by the release of CGRP,
whereas high doses of capsaicin lead to functional ablation of
these fibers (10). Therefore, the ablation of sensory nerves by
high doses of capsaicin provides the opportunity to determine
their role in the regulation of gastric integrity (13).

The next component, undoubtedly essential for gastric
mucosal barrier physiology, is prostaglandin cyclooxygenase
(COX), which converts arachidonic acid, a substrate for 
COX-1 and COX-2 to prostaglandins, especially prostaglandin
E2 (PGE2) (6, 8, 9). Prostaglandins (PGs) prevent damage of
deeper structures due to an increase of mucus secretion,
intensification of bicarbonate anions production (HCO3

-),
which neutralise acidic gastric content and the stimulation of
mucosal phospholipids (6, 19, 20). PGs were shown to evoke
increment of gastric blood flow (4, 21, 22) (Fig. 2), thus
enhancing oxygen and nutrients delivery to the gastric mucosa.
Two isoforms of COX: constitutive isoform, called COX-1, as
well as inducible isoform, called COX-2 were proposed (3, 6,
8). Classic approach to their functions revealed that PGs
derived from COX-1 exert gastroprotective effects, while high
levels of PGs, generated via COX-2 are associated with
inflammation causing an increase of vessels permeability, pain
and fever (8, 23-25). The administration of non-selective COX
inhibitors, for instance aspirin, which exerts a potent anti-
inflammatory effect, resulting from COX-2 inhibition, can also
cause side effects such as bleeding and haemorrhagic lesions of
the gastrointestinal mucosa, predominately due to COX-1
inhibition (10, 13).

These adverse effects of aspirin's action and other NSAIDs
ingested by patients with inflammatory disorders such as
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Fig. 1. Transformation pathways of a nitric oxide in the gastric tissue.
After stimulation of endothelial cells, constitutive NO synthase (cNOS) is activated, which transforms L-arginine (L-Arg) to nitric
oxide (NO). NO diffuses to smooth muscle cells of gastric blood vessels. Inside smooth muscle, NO activates guanylate cyclase,
transforming guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP). This cGMP, acting via myosin light chains
(MLC) phosphatase leads to relaxation of smooth muscle cell and subsequent increase of vessel diameter and larger blood flow. NO
may be also deliver by exogenous NO donors, such as sodium nitrate, nitroprusside or other organic nitrates and then it acts the same
way, as endogenous NO. Thiols (R-SH), for example, glutathione (GSH) cooperate with NO.



rheumatoid arthritis brought about the question, if new
derivative of aspirin, chemically linked to NO moiety, and called
NO-releasing NSAIDs (NO-aspirin, NO-naproxen) can
counteract the mucosal damage and micro-bleeding associated
with this novel NSAID therapy compared with classic NSAIDs
therapy. Both novel NO-releasing NSAIDs were shown to
possess COX-1-inhibitory and NO donating properties, thus
diminishing side effects including both gastroduodenal
bleedings and hemorrhagic lesions of gastrointestinal mucosa
(24, 26, 27).

REACTIVE OXYGEN SPECIES

As mentioned above, the reactive oxygen species (ROS)
contribute to the pathogenesis of gastric damage and many
agents were shown before to afford protection of the gastric
mucosa via inhibition of the oxygen metabolic pathways (13, 28-
30). The ROS are atoms or molecules, which exhibit higher
chemical activity than molecular oxygen in the basic state (31).
The most important ROS's include free radicals, such as
superoxide radical anion (O2

�-), hydroperoxyl radical (HO2
�-)

and hydroxyl radical (OH�) (32, 33). They exhibit high
reactivity due to unpaired electron in the outermost shell. Non-

free radicals, such as hydrogen peroxide (H2O2), ozone (O3) and
singlet oxygen (1O2) also belong to a class of ROS, because of
their high oxidative reactivity. Interestingly, the ROS could be
generated intracellulary and extracellulary (34-37). Intracellular
mechanism of ROS production is predominantly based on local
ischemic episodes within tissues followed by reperfusion (18,
21). Cellular ischemia results in diminished synthesis and
release of adenosine triphosphate (ATP) in mitochondria. In this
conditions ATP is breaking down to adenosine monophosphate
(AMP) and then adenine and hypoxanthine. At the same time the
mitochondria releases calcium ions (Ca2+) from their internal
space into cytoplasm. The increment of the cytoplasmatic pool
of Ca2+ activates intracellular protease, which converts xanthine
dehydrogenase (XDH) into xanthine oxidase (XO) (33). The
XDH uses nicotinamide adenine dinucleotide (NAD+) as the
electron acceptor for the oxidation of hypoxanthine and xanthine
into uric acid. This process is not accompanied by the generation
of ROS, rather, XO uses molecular oxygen, which is delivered
during reperfusion as an electron acceptor to produce superoxide
radical anion. Another mode of ROS generation is related to the
activation of the mitochondrial respiratory chain (38). Part of the
total number of oxygen molecules, involved in the function of
mitochondrial respiratory chain, is reduced in single - electron
reaction, because electrons "leak" from the electron
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Fig. 2. Factors regulating gastric mucosal barrier function.
Calcitonin gene related peptide (CGRP) is released at the ending of an afferent nerve. Then, CGRP stimulates an endothelium to
release nitric oxide (NO). NO influences a blood vessel, resulting in hyperemia. Hyperemia plays an important role in a cytoprotection.
This pathway may be activated or blocked at different levels. Low dose of capsaicin stimulates an afferent nerve. High dose of
capsaicin produces capsaicin denervation and blocks an afferent nerve. N-nitro-L-arginine (L-NNA) inhibits nitric oxide synthase
(NOS) in an endothelium. NO donors, such as SIN-1 (3-morpholinosyndnoimine), SNAP (S-nitroso-N-acetyl-DL-penicillamine),
nitroglycerin (GTN), NO-aspirin (NO-ASA) deliver NO exogenously. Pentoxifylline (PTX) and prostaglandins, similarly to NO, cause
hyperaemia. COX (cyclooxygenase), producing prostaglandins, may be blocked by SC-560, rofecoxib, resveratrol or aspirin (ASA).



mitochondrial transport chain and this leads to the formation of
superoxide radical anion (30) (Fig. 3).

In the extracellular model of ROS generation, O2
�- is released

from the outer surface of the cellular membrane to the
extracellular fluid. Classic example of this process is superoxide
(O2

�-) production by neutrophils. A neutrophil possesses in its
cellular membrane a specific enzyme NADPH oxidase, which is
composed by two subunits: flavoprotein and cytochrome b558
(30, 39). This enzyme catalyzes a double - electrons reduction of
oxygen molecule (O2), finally leading to generation of O2

�-. The
source of electrons, in this process, is reduced nicotinamide
adenine dinucleotide (NADPH) (36, 38). NADPH oxidase
manifests higher affinity to NADPH, than NADH, so NADPH is
only substrate for this enzyme in a cell. Neutrophil derived O2

�-
diffuses to adjacent tissues. Due to stability of O2

�- in
physiological pH, it can reach distant organelles from its place of
generation (28, 36). Kasazaki et al. (40) have documented the
association between both extracellular and intracellular sources of
ROS. The radical O2

�- produced by XO (intracellular mechanism)
facilitates tissue infiltration by neutrophils and this effect leads to
an augmentation of O2

�- generation from extracellular sources.
Further transformations of O2

�- take place in tissues, because
the two O2

�- radical react to each other leading to the formation
of hydrogen peroxide (H2O2) (41, 42). This reaction can occur

spontaneously or it could be catalyzed by an enzyme - superoxide
dismutase (SOD). H2O2 reacts with O2

�-, resulting in the
generation of OH� according to the Haber-Weiss reaction. This
process is accelerated by the presence of iron (Fe2+) ions (the
Fenton reaction) (41, 46). The formation of ROS may serve as a
prerequisite for damage to the surrounding tissues. Using electron
paramagnetic resonance with spinal trapping, Kasazaki et al. (40)
and Yasukawa et al. (42) have revealed that OH� seems to play a
major role in the formation of gastric mucosal injury.

LIPID PEROXIDATION

Irrespective of ROS type, the first stage of ROS-mediated
cellular damage is peroxidation of cellular membrane
components, especially membrane lipids in the process, called
lipid peroxidation (47, 48). This process particularly involves the
ROS-mediated oxidative degradation of components of cellular
membrane phospholipids, such as polyunsaturated fatty acids
(PUFA). In first step of lipid peroxidation, ROS detaches
hydrogen the atom from a chain of PUFA, followed by the
reduction of ROS to water and the transformation of fatty acid to
free radical. This radical of fatty acid attaches to oxygen molecule
loading to the generation of peroxyl radical. Free peroxyl radical
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Fig. 3. Electron transport chain in a mitochondrion.
Reactive oxygen species generation is related to the activation of mitochondrial respiratory chain. Correct pathway of mitochondrial
respiratory chain involves NADH (reduced nicotinamide adenine dinucleotide) dehydrogenase complex, cytochrome (cyt.) b - c1

complex and cytochrome oxidase complex. Electron transport along these complexes results in complete reduction of oxygen molecule
(O2), in presence of hydrogen ions (H+), to water molecule (H2O). Part of total number of oxygen molecules, involved in the function
of mitochondrial respiratory chain is reduced in single electron reaction, because electrons "leak" from the electron mitochondrial
transport chain and this leads to formation of superoxide radical anion.



of fatty acid has the ability to detach hydrogen atoms from other
PUFAs to generate lipid peroxides. Compared with lipids, lipid
peroxides are less stable and may break down to free radicals.
This process is accelerated by the presence of iron and copper
ions (Fe2+, Cu2+) (46, 49, 50). High reactivity of peroxyl radicals
with lipids molecules, as well as chemical instability of lipid
peroxides, contribute to positive feedback in lipid peroxidation,
thus quickly involving of majority of lipids at cellular membrane
(Fig. 4). Lipid peroxides are metabolized, via β-oxidation
pathway to malondialdehyde (MDA) and 4-hydroxynonenal (4-
HNE) (51-53). Other constituents of cellular membrane, as
aminoacids or proteins, are also involved in the process of lipid
peroxidation, however, in contrast to peroxidation of lipids, the
speed of this reaction is slowed down (33, 47, 48).

The products of lipid peroxidation, MDA and 4-HNE, are
advisable to be used as indicators of ROS-dependent tissue
damage in various organs including stomach and intestine (33, 47,
54). Lipid peroxidation products modify properties of cellular
membranes, by inserting polar groups into phospholipid
molecules, located inside the lipid bilayer; this way the lipid
internal part of the membrane becomes hydrophobic and more

permeable (47). Lipid peroxidation also causes alterations in the
membrane potential toward a depolarization. Moreover, the
peroxidation inhibits activity of protein transporters, leading to a
derangement of the active transport through the membrane (32,
51). The products of lipid peroxidation uncouples the respiratory
chain phosphorylation within the mitochondria, resulting from an
increase in permeability of internal mitochondrial membrane for
protons. This mechanism creates the equilibrium of proton
concentrations between both sides of the internal mitochondrial
membrane (39, 52). Aldehyde products of lipid peroxidation, such
as MDA, react with amine groups of membrane protein to yield
Schiff bases and therefore cellular membrane becomes more stiff.
Moreover, reaction between MDA and cellular membrane protein
changes its antigenic characteristic. Thiols also undergo oxidation
causing inactivation of the active enzymatic centers (33, 47, 48).

The next product of lipid peroxidation, namely 4-HNE, was
also shown to participate in the disorder of cellular functioning
during oxidative stress (46, 52, 53). This toxic product of lipid
peroxidation is probably involved in the pathogenesis of many
diseases including e.g. atherosclerosis, Alzheimer disease and
peptic ulcer disease (52, 54). Moreover, 4-HNE modifies cellular
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Fig. 4. Transformation of a superoxide radical anion in an organism (lipid peroxidation or neutralization of the radical). Superoxide
radical anion (O2

�-) reacts with cellular lipids, leading to the formation of lipid peroxides, that are metabolized to malondialdehyde
(MDA) and 4-hydroxynonenal (4-HNE). Other cellular compounds, such as DNA, proteins also may be modified by O2

�-, however
peroxidation of lipids is more intensive, because it has property of chain reaction. Nitric oxide synthase (NOS) produces nitric oxide
(NO), which reacts with O2

�- to produce peroxynitrite (ONOO�). ONOO� also participates in lipid peroxides formation. Superoxide
dismutase (SOD) catalyzes the dismutation of superoxide radical anion (O2

�-) into less noxious hydrogen peroxide (H2O2), that is
further degraded by glutathione peroxidase (GPx) and cooperating glutathione reductase (GR). The reduction of H2O2 into water by
GPx is accompanied by the conversion of glutathione from reduced form (GSH) into oxidized form (GSSG). GR restores pool of GSH
by reduction of GSSG, by means of reduced nicotinamide adenine dinucleotide phosphate (NADPH). Another enzyme - catalase - also
participates in H2O2 neutralization, releasing oxygen molecule (O2). Antioxidants, such as vitamins C and E, flavonoids and
carotenoids counteract reactive oxygen species (ROS) generation.



growth and exhibits signaling properties (53). 4-HNE easily
diffuses within the tissues making distant lesions and, similarly to
MDA may react with thiol and amine groups of cellular proteins,
resulting in cell metabolic disturbances. Other important
properties of 4-HNE are stimulation of neutrophil chemotaxis,
activation of phospholipase C (PLC) and the activation of
adenylyl kinase. Stimulation of neutrophil chemotaxis facilitates
ROS - dependent tissue destruction, resulting from intracellular
generation of ROS (52, 53). In conclusion, lipid peroxidation
products (MDA and 4-HNE) are responsible for a plethora of
cellular pathophysiological events, therefore measurement of
their concentrations, which reflects the damage induced by
oxidative stress can be considered to be a useful tool in the
experimental and clinical settings (39, 48, 53, 55).

SUPEROXIDE DISMUTASE

Superoxide radical anions (O2
�-) are transformed to hydrogen

peroxide (H2O2) during spontaneous or a catalyzed reaction,
named a dismutation (43-45). SOD is an enzyme, which catalyzes
the dismutation of O2

�- into less noxious H2O2 (49). Three types
of SOD can be distinguished: cytoplasmatic, mitochondrial or
extracellular ones, all containing metal ions in their catalytic
active site. Both the cytoplasmatic and extracellular SOD contains
copper and zinc ions; while the mitochondrial SOD is equipped
with manganous ion. Another isoform of SOD may contain iron
ion in the catalytic active site, but this SOD is predominantly
present in prokaryotes, for example, in bacteria (50, 51). The
cytoplasmic form of SOD consists of two identical, chemical
stable subunits. Chemical stability of this SOD is maintained by
hydrogen bonds, disulfide linkages inside subunit, as well as the
presence of zinc ion in the catalytic active site (45), while copper
ion plays a crucial role in the chemical activity of this enzyme.
The activity of this Cu/Zn-SOD enzyme involves the oxidation of
cuprous ion (Cu+) and reduction of cupric ion (Cu2+) by O2

�-, in
the presence of hydrogen ions (H+), leading to H2O2 generation. To
augment effectiveness of O2

�- neutralization, SOD possesses a
complex of amino acids with electric charges on the enzyme
molecule surface, necessary for the creation of an electrical
gradient. This gradient drags O2

�- directly to the active center of
the enzyme (49, 50, 57).

SOD plays a crucial role in scavenger cascade responsible
for ROS neutralization (55). H2O2 formed due to SOD activity is
further broken down by antioxidazing enzymes: a catalase or a
glutathione peroxidase (13, 53, 58). The catalase accelerates
H2O2 breakdown to water and oxygen. The second biochemical
pathway of H2O2 metabolism depends on the activity of
glutathione peroxidase, which cooperates with the action of
glutathione reductase. Glutathione peroxidase - induced
breakdown of H2O2 to water and is accompanied by
transformation of reduced glutathione (GSH) to its oxidized
form (GSSG) (Fig. 5). Glutathione peroxidase has a major
affinity to H2O2, suggesting the potent antioxidizing activity of
this enzyme in the maintenance of physiological conditions and
cell homeostasis (56, 58-60).

REDUCED FORM OF GLUTATHIONE

Reduced form of GSH is believed to act as a main
intracellular antioxidative buffer with multifaceted action
against tissue oxidative stressors. Chemically, glutathione is a
peptide composed of 3 amino acids, namely: glutaminic acid,
cysteine and glycine (γ-glutamylcysteinylglycine), and all
containing thiol (SH) groups originating from cysteine. The
availability of the glutathione SH group to oxidative action of

ROS leads to the formation of glutathione free radical (GS�) or,
as mentioned above, glutathione disulphide (GSSG), also known
as oxidized glutathione. Both forms undergo further biochemical
transformations, leading to regeneration of a reduced form of
GSH with a SH group, possessing the activity of digestive
peptidases (33). Isopeptic bond in the GSH molecule, composed
of γ-carboxylic residue of glutaminic acid with an amine group
of cysteine protects GSH from intracellular degradation (58).

GSH is a substrate for glutathione peroxidase (GPx) - an
enzyme which reduces H2O2. Both, GPx and GSH may also inhibit
lipid peroxidation directly or indirectly by mediation of lipid
peroxides peroxidase (10, 33). The important function of GSH is
protection of cellular proteins against oxidative injury. ROS
oxidizes proteins both through formation of protein free radicals
and oxidation of protein thiols. This latter action can be dangerous
to enzymatic proteins, because of their inactivation. GSH reduces
protein free radicals yielding glutathione free radical (GS�). In the
case of oxidation of protein thiols, activity of GSH is mediated by
specific enzymes called thiol transferases, which acts as catalyzed,
and are involved in the reduction of protein thiols by GSH, then
transformed to an oxidized form GSSG (31, 34). GSH can act as a
substrate for glutathione transferases (61, 62). These enzymes
conjugate GSH to xenobiotics, which enables their removal from
an organism. Glutathione transferases contribute to elimination of
lipid peroxidation products, namely GSH and 4-HNE. GSH+4-
HNE complex may be removed from a cell by active membrane
transport (61, 62). GSH can also cooperate with SOD to neutralize
ROS. Reactions between GSH and ROS yield glutathione free
radical (GS�), as described above. GS� reacts with GSH to yield
free radical of glutathione disulphide (GSSG�), which in turn
donates an electron to the oxygen molecule, converting it to O2

�-,
and is then eliminated by SOD (31, 33). This clearly suggest that
GSH and SOD cooperate in cell protective action against oxidizing
stress that may lead to the formation of gastric mucosal lesions in
the gastric mucosa caused by cellular damage via reactive oxygen
metabolites such as O2

�- and lipid peroxidation products (63, 64).

EXPERIMENTAL MODELS OF GASTRIC MUCOSA INJURY

The intragastric application of ethanol (3, 5, 63), the exposure
of rodents to water immersion and restraint stress (8, 10, 13, 26) as
well as the ischemia followed by reperfusion (I/R) (21, 43, 47, 64)
are widely accepted model of experimental injury to gastric
mucosa. In the majority of these methods, the development of
inflammation, often hemorrhagic type of inflammation, serves as a
prerequisite for mucosal erosions and even ulcers. The mechanism
of gastroprotection against gastric mucosal lesions induced by
ethanol, stress or I/R can involve the alterations in gastric blood
flow, mucus production and the role of prostaglandins (21, 63-65),
nitric oxide (9, 63, 65), growth factors (66, 67), appetite controlling
peptides such as nesfatin-1 (15), leptin (19) or ghrelin (68-70). The
pathogenesis of mucosal damage include the effect of damaging
agents on gastric acid secretion and neural regulation via brain-gut
axis (15, 19) and the participation of microorganism infecting
human stomach, such as Helicobacter pylori (37, 50 71) and
Candida albicans (72, 73). The ROS and oxidative metabolism can
contribute to a disturbances of the gastric mucosal barrier and the
formation of gastric lesions and their role in pathogenesis of gastric
mucosal injury has been described in a numerous studies (10, 20,
26, 33, 47, 65). The neutrophil induced gastric tissue infiltration
have also been documented, as well as the increase of tissue MDA,
4-HNE levels and diminution of antioxidative mechanisms. The
alteration in antioxidative status of gastric mucosa is accompanied
by the decrease of SOD activity, as well as the depletion of the
GSH pool, both implicated in the pathogenesis of I/R gastric
lesions (21, 43, 47). In rats exposed to 3.5 hours of water cold stress

618



(WRS), numerous gastric mucosal bleeding erosions accompanied
by the decrease of gastric blood flow (GBF) were observed (10, 13,
26, 47). Moreover, in a majority of these studies, an increase in
MDA and 4-HNE considered as an indicator of lipid peroxidation
with a decrease in gastric mucosal expression and activity of
antioxidative enzymes SOD and GSH were also notified. The
blockade of COX-1 and COX-2 activity by administration of SC-
560 and rofecoxib, respectively, and the capsaicin denervation had
magnified the number of gastric lesions and these effects were
accompanied by a further reduction of GBF (Table 1), SOD
activity, GSH concentration and enhancement in lipid
peroxidation, as reflected by higher MDA and 4-HNE levels, when
compared to animals exposed to WRS only (Table 2). On the other
hand, NO donors, such as SIN-1, SNAP, glyceryl trinitrate and
NO-releasing aspirin (26, 28) or antioxidazing compounds, such as
resveratrol (65, 74) and pentoxifylline (75), afforded the protection
of the gastric mucosa against WRS (Table 3), in part via activation
of antioxidative parameters involving a decrease of MDA and 4-
HNE, and an increase of SOD and GSH activities (Table 4).
Although resveratrol inhibits COX-1 (65), it acts as a radical

scavenger within mucosa injured by stress, thus affording some
protection (Table 3 and Table 4). On the contrary, aspirin possesses
scavenger's properties (Table 2), but this NSAID aggravates stress-
induced gastric lesions (Table 1), suggesting that its damaging
action depends rather on the more potent inhibition of
prostaglandin production than the scavenging activity against the
formation of ROS.

Some of these compounds can exert beneficial influence on
the gastric mucosa (glyceryl trinitrite , pentoxifylline) (75) or
they act as metabolites of medications (e.g. SIN-1 is a metabolite
of molsydomine) (10, 13). The adverse effects in the stomach
such as the acute microbleedings and gastric hemorrhagic
lesions evoked by stress are potentiated in the presence of
NSAID such as aspirin or indomethacin. Thus, the more detailed
determination of oxidative stress and the associated pathology in
the GI tract may contribute in design of new, noninvasive
method of prevention of gastrointestinal injury caused by
various ulcerogenes.

The lipid peroxidation products, specifically the activity of
(SOD) and the levels of GSH, play an important role as an
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Investigated group Mean lesion number Gastric blood flow
(% control) 

Placebo + WRS 
ASA  40 mg/kg (i.g.) + WRS 
SC-560  5 mg/kg (i.g.) + WRS 
rofecoxib  10 mg/kg (i.g.) + WRS 
capsaicin denervation + WRS 

24 ± 1,5 
29 ± 2 * 
27 ± 1 * 

27.5 ± 1 * 
29 ± 1.5* 

60 ± 2 
  50 ± 3 * 
  52 ± 2 * 
  54 ± 1 * 
  56 ± 4 * 

Table 1. Mean number of gastric lesions and gastric blood flow (GBF), as % of blood flow in the intact mucosa, in rats exposed to 3.5
hours of water immersion restraint stress (WRS) with placebo, aspirin (ASA) 40 mg/kg, SC-560 in dose 5 mg/kg, rofecoxib 10 mg/kg,
given intragastrically (i.g.) or capsaicin denervation. Asterisk (*) indicates a significant change as compared to the value obtained in
group: placebo + WRS.

Investigated group MDA+4-HNE SOD GSH 
Placebo + WRS 
ASA  40 mg/kg (i.g.) + WRS 
SC-560  5 mg/kg (i.g.) + WRS 
rofecoxib  10 mg/kg (i.g.) + WRS
capsaicin denervation + WRS 

15.85 ± 1.27 
11.00 ± 2.00* 
15.70 ± 1.30 
15.80 ± 0.60 
17.40 ± 0.20* 

245.20 ± 12.00 
287.20 ± 15.00* 
290.00 ± 35.00 
280.00 ± 46.00 
217.20 ± 15.00* 

0.63 ± 0.02 
0.62 ± 0.02 
0.55 ± 0.03* 
0.52 ± 0.03* 
0.50 ± 0.02* 

Table 2. Concentration of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) in nanomoles per gram of tissue (nmol/g),
superoxide dismutase (SOD) activity in units per gram of tissue (U/g) and concentration of reduced glutathione (GSH), expressed as
micromoles per gram of tissue (µmol/g), in the gastric mucosa of rats exposed to 3.5 hours of WRS with placebo, aspirin (ASA) 40
mg/kg, SC-560 in dose 5 mg/kg, rofecoxib 10 mg/kg, given intragastrically (i.g.) or in rats with capsaicin denervation. Asterisk (*)
indicates a significant change as compared to the value obtained in group: placebo + WRS.

Investigated group Mean lesion number Gastric blood flow 
(% control) 

Placebo + WRS 
SIN-1  5 mg/kg (i.g.) + WRS 
SNAP  5 mg/kg (i.g.) + WRS 
NTG 10 mg/kg (i.g.) + WRS 
NO-ASA 40 mg/kg (i.g.) + WRS 
resveratrol 10 mg/kg (i.g.) + WRS 
PTX 10 mg/kg (i.p.) + WRS 

24 ± 1.5 
7 ± 1* 

10 ± 1* 
14 ± 1 * 
14 ± 2* 
16 ± 1* 

 9.5 ± 4* 

60 ± 2 
  90 ± 3 * 
  89 ± 2 * 
  86 ± 1 * 

     85 ± 1.5 * 
  72 ± 2 * 
  88 ± 1 * 

Table 3. Mean number of gastric lesions and gastric blood flow (GBF), as % of flow in the intact mucosa, in rats exposed to 3.5 hours
of water immersion restraint stress (WRS) with placebo, SIN-1 (3-morpholinosyndnoimine) 5 mg/kg, SNAP( S-nitroso-N-acetyl-DL-
penicillamine) 5 mg/kg, nitroglycerin (NTG) 10 mg/kg given, NO-aspirin (NO-ASA) 40 mg/kg, resveratrol 10 mg/kg, given
intragastrically (i.g.) and pentoxifylline (PTX) 10 mg/kg, given intraperitoneally (i.p.). Asterisk (*) indicates a significant change as
compared to the value obtained in group: placebo + WRS.



indicator of tissue damage by ROS, known to contribute to the
pathogenesis of gastrointestinal damage (31, 34, 76). The
oxidative stress, amplified during stress (ulcerogenesis) was
accompanied by an elevation of MDA + 4-HNE and diminution
of SOD and GSH content. These ROS-mediated effects in
gastric mucosa exposed to stress were reversed by
gastroprotective substances releasing of NO, such as SIN-1,
SNAP, nitroglycerin, NO-releasingASA, and the antioxidizing
compound resveratrol resulting in reduction of stress-induced
gastric damage and attenuation of MDA + 4-HNE, content and
an increase in activity of antioxidizing enzymes SOD and GSH.
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