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The 37kDa protein annexin 1 (Anx-1; lipocortin 1) is a glucocorticoid-regulated
protein that has been implicated in the regulation of phagocytosis, cell signalling and
proliferation, and postulated to be a mediator of glucocorticoids action in
inflammation and in the control of anterior pituitary hormone release.
Immuno-neutralisation or antisense strategies support this hypothesis as they can
reverse the effect of glucocorticoids in several systems. We recently generated a line
of mice lacking the Anx-1 gene noting that some tissues taken from such animals
exhibited an increased expression of several proteins including COX-2 and cPLA2.
In models of experimental inflammation, Anx-1-/- mice exhibit an exaggerated
response and a partial or complete resistance to the anti-inflammatory effects of
glucocorticoids. Several other anomalies were noted including abnormal leukocyte
adhesion molecule expression, an increased spontaneous migratory behaviour of
PMN in Anx-1-/- mice and a resistance in Anx-1-/- macrophages to glucocorticoid
inhibition of superoxide generation. This paper reviews these and other data in the
light of the development of the �second messenger� hypothesis of glucocorticoid
action.
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INTRODUCTION

Although the potent anti-inflammatory actions of the glucocorticoid steroids
have been known since the late 1940s, their actual mechanism of action eluded
researchers for many years. Many early ideas were advanced to explain their
action, one of the most influential of which was the hypothesis of Weismann and
his colleagues who suggested that these drugs �stabilised� lysosomal membranes
(1) thereby reducing the severity of the inflammatory response.

Another, even more ancient, anti-inflammatory drug with an unexplained
action at the beginning of the 1970s was aspirin. Whilst the pharmacology of the
�aspirin-like drugs� was well known, no one understood how the therapeutic and
side effect profile of these drugs was linked. Vane�s resolution of this problem
depended upon the observation that prostaglandins could produce many of the
symptoms of the inflammatory response and that their removal through inhibition
of the prostaglandin forming cyclo-oxygenase could account for most aspects of
their therapeutic action (2, 3) including their ability to inhibit hyperalgesia (4) and
fever (5, 6). It also seemed likely that the mechanism-based side effects of aspirin,
such as the gastric irritancy, could also be explained on the basis of prostaglandin
involvement in this phenomenon (e. g. ref (7)). Indeed for a while in the 1970s, it
seemed that prostaglandin synthesis was the key which unlocked most of the
mysteries of the inflammatory response.

It was in keeping with the spirit of these discoveries therefore that the effects
of several other anti-inflammatory drugs (the glucocorticoids and DMARDs)
were tested on the cell-free cyclo-oxygenase enzyme system in the early 1970s
with the finding that they were uniformly inactive (8). But, given the prominence
of the �prostaglandin� theory of inflammation, this posed a conceptual problem:
if these drugs didn�t inhibit prostaglandin generation, how did they bring about an
anti-inflammatory effect? This mystery was compounded by another series of
observations which suggested that the glucocorticoids could, under some
circumstances, inhibit prostaglandin generation � but only in intact cells (9,10).

The most likely explanation for this was that these drugs inhibited some other
facet of the prostaglandin generating pathway - other than the cyclo-oxygenase
itself. Since arachidonic acid was thought to be the most abundant substrate for
the generation of prostaglandin E2 and other members of this series, a potential
mechanism of action could be the inhibition of the release of substrate. Several
studies demonstrated that this was indeed the case as glucocorticoids were seen
to block the release of prostaglandins from intact cells or perfused organs whilst
having no effect upon the conversion of arachidonic acid (10,11). It seemed that
a likely mechanism was inhibition of substrate liberation probably through
inhibition of the activity of the enzyme phospholipase A2, the most likely enzyme
to be involved in cleavage of arachidonyl containing phosphatides in the cell. But
how was this regulatory action of glucocorticoids achieved?
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Despite the fact that specific glucocorticoid receptors had been observed in the
nuclei of some cells (12) and the �genomic� theory of sex steroid action was
already beginning to be understood (13,14), few workers had applied this type of
thinking to the problems of the anti-inflammatory action of the glucocorticoids.
Building upon this type of approach we, and others (15-17) tested glucocorticoid
receptor antagonists and inhibitors of RNA and protein synthesis, as inhibitors of
the effect of glucocorticoids on prostaglandin release. We found that the ability of
glucocorticoids to prevent arachidonic acid release (as well as other effects) was
completely vitiated by such agents providing strong support for an alternative,
genomic, action of these drugs.

The �second messenger� hypothesis

If the glucocorticoids were acting in such a fashion, how did they do it? By
modifying gene expression they clearly had the potential to bring about
a profound change in the biology of the cell by altering the synthesis of many
cellular proteins. Our group took one facet of glucocorticoid action � the ability
to interfere with prostaglandin generation in intact cells � and further analysed the
mechanism. Our studies revealed that the glucocorticoids caused the release and
synthesis from cells and tissues of a �second messenger protein� which had the
ability to inhibit arachidonic acid release in other cells and tissues (18). Initially
this protein was dubbed �macrocortin� (19), but later the name was changed to
�lipocortin� (20) to accommodate the fact that two other groups had also
discovered second messengers of glucocorticoids which seemed to be identical or
at least closely related proteins (21, 22).

From farther studies it seemed that there were several lipocortins that could be
released from cells following glucocorticoid treatment (23). The protein
responsible for the majority of the biological activity was characterised as
a monomeric phosphorylated species of approximately 40kDa. It could be
prepared from glucocorticoid-stimulated cells or from the peritoneal lavages of
glucocorticoid-treated rats by ion-exchange and affinity chromatography 
(23-25).

The protein was eventually sequenced and cloned (26) and the 37kDa
recombinant human protein shown to share the anti-inflammatory and
eicosanoid suppressive properties of the naturally occurring protein (27). The
other �lipocortins� were likewise sequenced and found to be closely related
species (28).

It was recognised that lipocortins belonged to a much larger family of proteins
characterised by the presence of several (usually 4) repeating domains that
conferred calcium and phospholipid binding properties on the protein. This super
family is now termed the �annexins� and eventually, the name lipocortin 1 was
changed to �Annexin-1� (Anx-1) to accommodate this finding. In addition to the
characteristic repeating conserved 70aa calcium binding domain each member of
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the family has a unique N-terminal tail. The presence of annexins in many
different plant and animal species suggests a function that is fundamental to the
biology of many different cell types (29).

Since its discovery, our work, together with that from other laboratories, has
implicated Anx-1 in control of cell growth (30) and differentiation (31), signal
transduction and arachidonic acid release (32, 33), as well as intracellular vesicle
trafficking (34-36). In mammals, glucocorticoids regulate the synthesis,
phosphorylation and cellular disposition of Anx-1 and work from our laboratory,
as well as from others, has provided further evidence for the involvement of
Anx-1 in the regulation by these drugs of leukocyte migration (37), acute (38) and
chronic (39) inflammation, ischaemic damage (40-42), pain (43) and fever (44).

It is not just the host defence system that is a target for Anx-1. The
glucocorticoids themselves have crucial actions in the neuroendocrine system
where they act to inhibit the release of pituitary hormones. In the rodent anterior
pituitary gland for example, the inhibition of ACTH (45) and other (46) hormone
release by glucocorticoids is mediated through an Anx-1 dependent mechanism.

The protein is elevated or released in man after systemic (47, 48), or local (49)
administration of glucocorticoids and endogenous levels in circulating monocytes
correlate with the activity of the HPA axis in normal, cushingoid and addisonian
patients (50) and there have been many reports that defects in Anx-1 function are
implicated in human diseases; familial Mediterranean fever (51, 52), fragile
X syndrome (53) and Weber-Christian disease (54), for example. In other
disorders, such as in cystic fibrosis (55) and other lung pathologies (56-58)
Anx-1 appears to have an abnormal metabolism and it has also been implicated,
directly or indirectly, in the control of human cell division (30) or differentiation
(31) and tumour development, (59) skin disorders (60, 61) and CNS pathology
(62, 63). Auto antibodies to Anx-1 may be responsible for some forms of
glucocorticoid resistance in rheumatoid patients, (64) associated with the
pathology of SLE (65) and Crohn�s disease (66) and could be a diagnostic marker
for certain type of tumours (67).

Our previous attempts to delineate the role of Anx-1 in physiopathology tested
the human recombinant protein (or peptidomimetics) as a putative
anti-inflammatory agent or employed acute passive immunisation strategies to
probe the involvement of Anx-1 in glucocorticoid action. Anx-1 showed great
selectivity of action in inflammation being mainly active in models of
inflammation where the involvement of PMN was crucial to the development of
the response (e. g. ref (68)). When neutralising antibodies were used in models of
rodent inflammation such as the zymosan-inflamed air pouch, our chief findings
were that they exacerbated inflammation as assessed by PMN influx, cytokine
and eicosanoid synthesis and resolution of the response (69). The results of many
of these studies are shown in Table 1 and it is clear that whilst duplicating some
of the effects of glucocorticoids, Anx-1 does not account for all their effects. This
is what we anticipated as the whole thrust of our work was to replace the rather
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Species Inflammatory model Parameter Effect of Anx-1 Effects of GCs Effect of Ref. 

anti-annexin abs.

Rat Carrageenin paw oedema Swelling Inhibits Inhibits Reverses GCs (68,81)

Dextran paw oedema Swelling None or slight. NT NT (68)

48/80 paw oedema Swelling Inhibits moderately Inhibits NT (68)

PLA2 paw oedema Swelling Inhibits NT NT (68)

PAF paw oedema Swelling None Inhibits NT (68)

Bradykinin Swelling None Inhibits NT (68)

5HT Swelling None Inhibits NT (68)

Brain ischemia Oedema Inhibits NT Exacerbates (40)

Myocardial reperfusion PMN damage Inhibits Inhibits Reverses GCs (82)

Splancnic reperfusion injury PMN damage Inhibits Inhibits Reverses GCs (41)

ILIb hyperalgesia Pain Inhibits Inhibits Reverses GCs (43)

Mouse Air pouch (IL 1 (3) PMN migration Inhibits Inhibits Reverses GCs (83)

Air pouch (zymosan) PMN migration NT NT Exacerbates (69)

Air pouch (ovalb) Eosinophil migration None Inhibits None (84)

Zymosan blister Oedema NT NT Exacerbates (69)

Hampster Intravital microscopy PMN migration Inhibits Inhibits Reverses (85)

Rabbit Fever (poly 1C) Body temperature Inhibits Inhibits NT (44)

Table 1. Some models of Inflammation where Anx-1 is Active or Implicated in the Mechanism of Glucocorticoid Action.



simplistic physico-chemical account of glucocorticoid action with a model that
depends upon the action of many genes.

However, inflammation was not the only system where Anx-1 was implicated
as a mediator of glucocorticoid action. In models designed to mimic activation of
the HPA axis during infection or inflammation, passive immunisation blocked the
inhibitory effects of exogenous corticosterone or dexamethasone on IL-l induced
increases in ACTH (70, 71). Similarly, passive immunisation studies have
suggested that the capacity of glucocorticoids to counter the regulatory action of
cytokines on the secretion of growth hormone and prolactin is dependent on
Anx-1 (71).

A transgenic approach.

Recently, we decided to employ a transgenic strategy to study farther
Anx-1 function in rodents (72). We were encouraged in this approach by the
observation that in the case of some other members of the annexin family, such
as Anx-6 (73) and (possibly) Anx-7 (74) (75), gene deletion was not a lethal
mutation and that animals grow to sexual maturity without any obvious
developmental problem. Therefore, using conventional gene targeting techniques,
we raised a line of mice that lacked the Anx-1 gene.

There was no obvious physical difference between the Anx-l-/- Anx-1+/- and
Anx-1+/+ littermate control mice in terms of gross physical appearance or
behaviour and we saw no significant differences in weight between any of the
(sex matched) groups at any time point examined. All animals appeared healthy,
bred normally and produced healthy Anx-1-/- offspring.

There were, however, striking changes in this study in the altered expression
in some tissues of other members of the annexin family together with the over
expression of COX-2 and cPLA2 in the lung and thymus. The idea that there may
be some form of reciprocal regulation between annexin family members and that
inducible COX-2 and cPLA2 enzymes is congruent with some previously
published observations (76, 77).

In inflammation, many of our early findings were echoed, and confirmed by
this gene �knockout� study. In mouse paw carrageenin-induced oedema, for
example, the inflammatory response exhibits a characteristic biphasic pattern
(78). The first phase peaks at 4-6h and resolves at 24h whilst the second phase
peaks at 72h and resolves at >96h. Dexamethasone (l0µg/kg x3, i.p.) strongly
inhibited the first phase of oedema (mainly PMN-dependent: ref 78) in Anx-1+/+

mice (Fig. 1) but was completely without effect in Anx-l-/- mice. In contrast, the
glucocorticoid generally maintained its efficacy in the second phase (mainly
macrophage - lymphocyte - and eosinophil - dependent (78)) of the oedema. An
exaggerated response to zymosan was also seen in another zymosan peritonitis
model with greatly increased PMN migration and an increase in IL1β observed
during the course of the inflammatory response. Once again dexamethasone was
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noticeably less efficacious in the Anx-l+/- and Anx-1-/- mice than in the wild type
controls.

We also saw changes in the behaviour of leukocytes including alterations in
adhesion molecule expression and defects in zymosan phagocytosis. Interestingly,
hydrocortisone, which inhibits the activation of PMN superoxide generation by
aggregated IgG in Anx-1+/+ mice was completely ineffective in the Anx-1-/- animals.
At the level of the microcirculation an increased basal adherence and migration of
PMN was observed using intravital microscopy techniques but the velocity of
rolling was not altered. A summary of many of these changes is given in Table 2.

Modulation of the synthesis and release of Anx-1 is, of course, not the only
way in which glucocorticoids operate; they can act through a variety of
mechanisms including inhibition of NF-κB activation, direct genomic actions
mediated through GREs as well as other signalling effects (32, 79) to bring about
their effects. There are also several ways in which the activated glucocorticoid
receptor can function to effect cellular changes. We recently described a rapid
receptor-dependent, genome-independent, signalling effect of glucocorticoids in
the A549 human carcinoma cell line mediated by src specifically involving
Anx-1 and demonstrated that this pathway is utilised preferentially by some, but
not all glucocorticoids (80). Because of the apparent redundancy of
glucocorticoid mechanisms we were not surprised that not all effects of these
drugs were suppressed in the Anx-1-/- animals. Such results suggest that
glucocorticoids employ separate but parallel pathways to regulate inflammation
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Figure 1. Failure of dexamethasone to inhibit the PMN dependent phase of carrageenin paw oedema
in Anx-1-/- mouse.
Black columns, wild type mice. White columns Anx-1-/- mice. Cross-hatched columns, 10µg
dexamethasone i.p. at 2, 6 and 24 h. Data analysed relative to time-matched, vehicle-treated control
using student�s t-test, n= 17-18 per group; ** P<0.01.



and is congruent with the observation that the recombinant protein exerts
anti-inflammatory effects in some, but not all, inflammatory models (68).

CONCLUSION

In summary the overall pathophysiological picture of Anx-1 gene deletion that
emerges from our studies suggests a heightened sensitivity to inflammatory and
other environmental stimuli. This is no doubt exacerbated in vivo by the
ineffectiveness of endogenous glucocorticoids adequately to control the
inflammatory response because of the absence of this protein.

Acknowledgements: RJF is a Principal Fellow of the Wellcome Trust and we wish to thank the
Trust for supporting this study (Grant no. 051887/97).
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Parameters measured

Tissue protein expression*
Cox-2
CPLA2

Adhesion molecules
Basal PMN/MonoCD11b
Basal PMN/Mono L selectin

Stimulated PMN/Mono CD11b

Macrophage phagocytosis
Uptake ofunopsonised zymosan 
Uptake ofopsonised zymosan

PMN superoxide generation
IgG stimulated
Red Oxyburst assay

Intravital microscopy
Basal PMN rolling
Basal PMN adherence
Basal PMN migration

Inflammatory models
Carrageenin induced paw oedema
PMN dependent phase
PMN independent phase

Zymosan peritonitis
PMN migration
IL 1β production
TNFα production

Behaviour in Anx-1-/- Mouse

Increased
Increased

Reduced
Elevated

Exaggerated

Greatly diminished
Diminished

Unchanged
Unchanged

Unchanged
Increased
Increased

Slightly increased
Slightly increased

Greatly exaggerated
Increased
Slightly increased

Effect ofGCs

NT 
NT

NT
NT

NT

NT
NT

Abolished
Abolished

NT
NT
NT

Abolished
Unchanged

Diminished
NT
NT

Table 2. Summary of differences between Anx-1+/+ and Anx-1-/- mice in response to inflammatory
stimuli.
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