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Review article
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Although the use of angiotensin converting enzyme inhibitors (ACE-Is) in clinical
practice brought the great chance to recognize the RAS role in the physiology and
pathology, there are still many questions which we cannot answer. This article
reviews actually known pathways of angiotensin II (Ang II) and other peptides of
renin-angiotensin system (RAS) production and their physiological significance. The
various carboxy- and aminopeptidases generate a range of peptides, like Ang II, Ang
III, Ang IV, Ang-(1-7) and Ang-(1-9) possessing their own and known biological
activity. In this issue especially the alternative pathways of Ang II synthesis
involving enzymes other than angiotensin-converting enzyme (ACE) are discussed.
We present many evidences for the significance of a new pathway of Ang II
production. It has been clearly shown that Ang I may be converted to Ang-(1-9) by
angiotensin-converting enzyme-related carboxypeptidase (ACE-2) and then into
Ang IT in some tissues, but the enzymes responsible for this process are unknown till
now. Although there are many data proving the existence of alternative pathways of
Ang II production, we can still block only ACE and angiotensin receptor 1 (AT,) in
clinical practice. It seems that a lot needs to be done before we can wildly
complexively control RAS and treat more effectively cardiovascular disorders such
as hypertension or heart failure.
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angiotensin-converting enzyme-related carboxypeptidase, ACE-Is -
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INTRODUCTION

The renin-angiotensin system (RAS) is highly complicated hormonal system
controlling cardiovascular system, kidney and adrenal glands, thus crucial for
hydro-electrolyte balance and blood pressure regulation. Apparently, RAS is not
only endocrine, but also auto- and paracrine system. The final effect of RAS
activation is complex and based, on the one hand, on the biological activity of
angiotensin II (Ang II), and on the other hand on the activities of other products
of Ang I metabolism, exerting often opposite to Ang II action.

In the last few years, the RAS has been newly recognized and its importance
is greater than we even thought. Nowadays it is known that there are two RAS
systems: plasma-localized, regulating urgent cardiovascular system function and
tissue-localized, regulating long-term changes. Furthermore, new enzymes have
been described and our knowledge about pathways of angiotensins production
expanded. The recently accepted metabolism of Ang I in plasma and tissues are
described below and presented on Figure 1.

THE PLASMA PATHWAYS OF ANG I METABOLISM AND THE BIOLOGICAL
FUNCTION OF ITS MAIN PRODUCTS.

Plasma RAS it thought to be endocrine system. Released from
juxtaglomerular apparatus renin cleaves of Leu-Val peptide bond at N-terminus
of angiotensinogen, generating decapaptide - Ang I. At a next step the dipeptide
(His-Leu) is cleaved form Ang I at C-terminus to generate Ang II by angiotensin
converting enzyme (ACE). ACE is a dipeptidyl carboxypeptidase glycoprotein
weighting 90-100 kD or 140-160 kD, dependently to localization (1). It is
classified as a M2-family metalloprotease containing one zinc ion in its structure.
Moreover, ACE is identical to kininase II, thus it degradates bradykinin, which
was previously widely described (2). Additionally ACE is potent to convert Ang-
(1-9) into Ang-(1-7) (3). Furthermore, at the N-terminus, Ang II is cleaved by
aminopeptidase A (APA) to form Ang III, which is depleted of the last N-terminal
aminoacid by aminopeptidase N (APN) generating Ang IV. Ang IV, in turn is
degradated into small fragments. Endopeptidases may also cut off Asp from the
N-terminus of Ang I forming Des-Asp'-Ang I (DAA-I), which, in turn is cleaved
by ACE directly into Ang III (4).

Angiotensin Il [Ang-(1-8)]

Ang II is the best described peptide of RAS. Its properties in physiology and
pathology of cardiovascular system had been widely discussed in previous
review articles (4-6). Shortly, Ang II increases activity of sympathetic nervous
system, acts as a vasoconstrictor, increases aldosterone release and sodium
retention (4). Additionally, Ang II stimulates free radical production,
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plasminogen activator inhibitor - 1 (PAI-1) release, tissue factor (TF) and
adhesion molecules (VCAM-1) expression. Moreover, in blood vessels it
stimulates smooth muscle cells proliferation and leukocyte adhesion. What is
important, Ang II inhibits nitric oxide synthase (NOS), thus diminishing all
beneficial effects of nitric oxide (NO) (6). We have also found that Ang II
enhances venous and arterial thrombosis development in rats (7, 8). Recently it
has been shown that Ang II in the presence of ACE-I and AT, receptor blocker
(ARB) increases duodenal HCOj;™ secretion via a common pathway, involving
bradykinin, NO and prostaglandis (9).

Angiotensin Il [Ang-(2-8)]

Similarly to Ang II, Ang III is also a vasoconstricting factor. After intravenous
infusion into healthy volunteers and hypertensive patients it increases blood
pressure about 20 mmHg (10) and augments aldosterone concentration (11). Ang
IIT had 25% of the pressor potency of Ang II when tested using acute intravenous
administration into rat (12). It is also postulated that Ang III is responsible for
central regulation of blood pressure. Indeed, in rats injection into lateral cerebral
ventricles of the selective APA inhibitor EC33 [(S)-3-amino-4-mercaptobutyl
sulfonic acid] blocked the pressor response of exogenous Ang II (13). Similarly
to Ang II, Ang III concentration increases during development of renal
hypertension in rat. Moreover, Ang III may increase expression of growth factors,
like TGF-B1 and proteins of extracellular matrix, like fibronectin (14).
Furthermore, in vitro Ang 111 is a chemoattractant factor for polymorphonuclear
leukocytes (PMN's) (15). All these activities makes this peptide less potent, but
similar to Ang II.

Angiotensin 1V [Ang-(3-8)]

Some authors report that Ang IV is a vasorelaxative agent and this effect is
contributed to activation of endothelial NOS (16). Nevertheless intravenous
infusion of this peptide does not affect mean blood pressure (17). On the other
hand Ang IV, like Ang II, seems to be a proliferative agent and Ang IV receptor
- (AT, receptor) is involved in this effect (18). Moreover it has been proved that
Ang IV stimulates the activity of tyrosine kinases (PTK) in experimental rat
pituitary tumor and in normal rat anterior pituitary tissue (19).

Angiotensin-(1-9)

Ang-(1-9) is relatively poorly known peptide. Physiological concentration of
Ang-(1-9) in human and rat plasma is very low (20), but in kidney it reaches
about 50% of Ang I concentration (21). It is strong, competitive inhibitor of ACE
(at multiple-fold lesser concentration than Ang I) (22) and like Ang-(1-7), due to
enhanced bradykinin action on its B, receptor, increases nitric oxide and
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arachidonic acid release. Moreover, the action of Ang-(1-9), is significantly
stronger when compared to the effect of Ang-(1-7) (23).

Because Ang-(1-9) is probably the main product of Ang I metabolism in
platelets (24), its involvement in the regulation of platelet function is possible.
Our preliminary experiments showed that Ang-(1-9) inhibits in vitro collagen-
induced platelet aggregation in rat (25).

Angiotensin-(1-7)

Ang-(1-7) is an active peptide of RAS. It counteracts vasoconstriction by
releasing nitric oxide and prostacyclin (26). Moreover, it opposites Ang II
mitogenic, arrythmogenic and procoagulant activities (4). Enhancing natriuresis
and diuresis it inhibits water and sodium retention caused by Ang II. Recently it
has been shown that vasodilatative and diuretic activities of Ang-(1-7) are
mediated via Mas, G- coupled protein receptor (27). Furthermore, some activities
of Ang-(1-7) are blocked by AT, and AT, receptors antagonists (26). On the other
hand, Ang-(1-7) independently to Mas-receptor increases bradykinin activity and
antagonizes hypertrophic action of Ang II (28). In 2002 non-peptide antagonists
of Ang-(1-7) receptor have been described (29).

TISSUE RAS

Local synthesis of Ang peptides begins when angiotensinogen penetrates
from plasma into a tissue. It is known that angiotensinogen is not synthesized
in situ, thus has to be produced in liver and distributed with plasma (30, 31). At
the next step angiotensinogen is enzimatically cleaved by renin - free or bound
to cell membrane. According to actual data, renin and prorenin are not
synthesized outside of juxtaglomerular apparatus, but they are bounded and
internalized by their own peripheral tissues renin receptors (32, 33). On the
other hand, another observations indicated alternative, independent to renin,
pathways of Ang II synthesis from angiotensinogen. In in vitro experiments it
was shown that Ang Il may be produced directly from angiotensinogen by
tissue-type plasminogen activator (t-PA), cathepsin G, tonin, trypsin and
chymotrypsin (34-36). Until now it has not been established which of these
pathways is significant in vivo. First, some of postulated alternative enzymes,
for example catephsin D, produce Ang II under non-physiological pH values
(37). Furthermore, the total lack of Ang I and Ang II in animal and human
plasma and tissues after bilateral nephrectomy questions the existance of non-
renin pathways of angiotensins synthesis (38). In tissues, like in plasma, Ang I
is converted into Ang Il mostly by bound to cell membrane ACE. Experiments
conducted on Langendorff hearts showed that newly generated Ang II
immediately bounds to the angiotensin receptors or it is internalized and stored
inside the cell (39).
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In tissues Ang Il is also converted by angiotensin-converting enzyme-related
carboxypeptidase (ACE-2) (40) or by poorly identified carboxypeptidase P to
Ang-(1-7), which reaches very high concentrations when compare to plasma.
Another substrates for Ang-(1-7) production are Ang I and Ang-(1-9). The Ang-
(1-7) peptide is synthesized by specific endopeptidases cutting of three
aminoacids: Phe, His and Leu at C-terminus of Ang I. Additionally, in the
endothelial cells of human, porcine and bovine aorta and in human umbilical
cord vein, the main enzymes converting Ang [ and Ang-(1-7) are: neprylizin and
pyrrolic endopeptidase and in smooth muscle cells of normotensive or
spontaneously hypertensive rats - thiomethyl oligopeptidase (41). As mentioned
before, Ang-(1-7) is synthesized directly from Ang-(1-9) by ACE cutting of C-
terminal Phe and His from Ang-(1-9) (42). In brain Ang Il is degradated not only
to Ang-(1-7) but also, like in plasma, to Ang III, Ang IV and small, fragments
(Fig. I1). Because of both renin and angiotensinogen do not penetrate the blood-
brain barrier, it seems that all RAS elements are synthesized locally in the central
nervous system (CNS). Indeed, the main amounts of angiotensinogen are
synthesized by astrocytes. Probably the enzyme responsible for Ang I synthesis
in CNS is cathepsin D. Furthermore, in the brain the presence of
aminopeptidases A and N synthesizing Ang III an Ang IV is also well
documented (43). But yet exact localization of angiotensin peptides synthesis in
CNS remains unknown.
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ALTERNATIVE PATHWAYS OF ANG II PRODUCTION.

It is well established, that are many findings indicating that ACE-Is totally
inhibit Ang II generation both in plasma and tissues, proving that ACE play
crucial role for Ang II synthesis (44). We have recently shown that there are some
pharmacological differences among various ACE-Is (45, 46). It should not be
excluded than, that ACE-Is may be non-selective. Moreover, in many patients
treated with ACE-Is blood pressure does not decrease whereas aldosterone
concentration increases (47). Interestingly, in normotensive and hypertensive rats
after 14-day therapy with ceranapril or lisinopril plasma concentration of Ang II
grows multiple-fold. The authors of this observation suggest that the activity of
unknown enzymes metabolizing Ang I increase just as a result of ACE-Is
presence (48). But still the main problem remains unsolved: why, despite of ACE
blockade, Ang II is generated in plasma? Many authors proved an existence of
alternative, independent to ACE, pathways of Ang II synthesis form Ang I under
in vitro conditions (49-54).

Chymostatin-sensitive Ang Il Generating Enzyme (CAGE) - dependent pathway
of Ang Il production

Experiments with isolated aortas showed, chymostatin-sensitive enzyme,
generating Ang II from Ang I - CAGE (49). However, its role in physiology is
still unclear.

Chymase - dependent pathway of Ang Il production

In 1991 another enzyme was isolated and clonned - the heart chymase, which
was being suggested to be responsible for Ang II synthesis in the heart (50).
Moreover, kinetic investigations showed, that chymase produces at least 90% of
Ang II in heart (51). However, it seems that this enzyme is crucial only under
pathological conditions, eg. in ischemic heart, because it is accumulated in
inflamation cells -mastocytes. Besides the heart chymase has been discovered
nearby 15 years ago, effectiveness of chymase inhibitors in therapy of
cardiovascular system was not yet confirmed.

ACE-2 - dependent pathway of Ang Il production

In 2000 a new enzyme cleaving Ang I into Ang-(1-9) was identified (52)
(Fig.I). It is called angiotensin-converting enzyme-related carboxypeptidase
(ACE-2). Like ACE, it is a zinc metaloprotease weighting about 120 kD. First
ACE-2 was identified from 5' sequencing of a human heart failure ventricle
cDNA library. Unlike to ACE, ACE-2 in vitro cuts off a single aminoacid from
Ang I or Ang II, forming Ang-(1-9) and Ang-(1-7), correspondingly (53).
Nevertheless, catalytic activity of ACE-2 vs Ang II is even 400-fold higher in
comparison to that vs Ang I (54). Moreover, it is not inhibited by ACE-Is and it
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is involved in synthesis of other active peptides like apelline-13 or dynorphine A.
ACE-2 is present in macrophages, endothelial and smooth muscle cells. ACE-2
gene expression is described in cardiovascular system (53), in renal cortex and
medulla (53, 55), some tissues of gastrointestinal tract (55) and in testis (56).
Interestingly, changes in ACE-2 expression were observed in various
physiological and pathological conditions, for example during pregnancy, in
hypertension, in heart and renal failure and in diabetic patients (53-59). In
glomeruli of diabetic mice the level of ACE-2 grows, when ACE decreases in the
same time, suggesting nephroprotective role of ACE-2 in early stages of diabetes
mellitus (57). Furthermore, it is proved that after myocardial infarction, both in
rat and human, ACE-2 expression in various tissues increases, indicating the role
of ACE-2 - dependent pathways counteracting of negative effects of RAS
activation in states after heart dysfunction (58). In turn, in rats with three various
models of hypertension, mRNA for ACE-2 decreases (59). Thus, it is possible,
that all beneficial ACE-2 - dependent effects may be a result of biological action
of products of this enzyme: Ang-(1-9) and Ang-(1-7).

After describing of ACE-2 the biological significance of a new alternative
pathway of Ang II production became more probable. First, it has been clearly
shown that Ang [ may be converted to Ang-(1-9) by ACE-2 (52, 53). Second,
many interesting previous findings indicate that Ang-(1-9) may be converted into
Ang II in some tissues, but the enzymes responsible for this process are unknown
till now. Drummer et al. proved that homogenates of rat kidney, and in a lesser
extent lung, converts Ang-(1-9) to Ang II, due to ACE - independent
aminopeptidase and N-like carboxypeptidase (60) (Fig. 1). Theoretically (kinetic
investigations in vitro) it is known that Ang-(1-9) is metabolized by ACE to Ang-
(1-7), and further to Ang-(1-5) and Ang-(1-4) (52). Nevertheless, Drummer et al
(60) showed that in the kidney the main product (71%) of Ang-(1-9) conversion
is Ang II, accompanied by small amounts of Ang III and Ang-(2-9).
Unfortunately, the use of poorly specific inhibitor of the sequent conversion in
kidney (cobalt, EDTA, iodoacetic acid) did not allow to clearly identify the
enzyme responsible for this reaction (60). Furthermore, in 2005 Singh et al.
confirmed that the pathway: Ang I - Ang-(1-9) - Ang Il really exists in glomeruli
of streptozotocin-induced diabetes mellitus rats (61). Moreover, in human heart
tissue the main products of Ang I degradation are both Ang-(1-9) and Ang II
generated by heart chymase, ACE and poorly identified carboxypeptidase A (22).
However, it is still not established whether Ang-(1-9) may occur in plasma under
physiological conditions. Many investigators failed to measure Ang-(1-9) level in
plasma, but some found even higher than Ang II concentration of Ang-(1-9) (21,
62). Another riddle is the source of Ang-(1-9) found in plasma. Is it generated on
the endothelial cells surface (similarly to ACE action), or rather Ang-(1-9) is
produced and secreted by platelets into the blood? Snyder et al. showed that the
main metabolite of Ang I in platelet is not Ang II but Ang-(1-9), which
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simultaneously inhibits ACE (24), but did not examine whether Ang Il can be
produced from Ang-(1-9).

CONCLUSION

Despite of over 100 years passed after Tigerstedt and Bergman discovered RAS,
our knowledge about this system remains incomplete. We know there is a highly
complex tissue RAS, involving multiple ways of Ang II production. Apart that, Ang
1 is the source of other active peptides, like Ang-(1-7) or Ang-(1-9). Thus, it seems
that the result of the activation of RAS in tissues is the joint effect of several
peptides. Their production is determined by the activity of various enzymes, well-
known, like ACE, chymase or CAGE or newly described, like ACE-2. Although
there are many evidence proving the existence of alternative pathways of Ang II
generation, we still block only ACE and AT receptor in clinical practice. It seems
that a lot needs to be done before we can wisely control RAS and treat more
effectively cardiovascular disorders such as hypertension or heart failure.
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